基于RNN循环神经网络的锂电池剩余寿命预测Matlab实现







1. 主要功能

rongliangtiqu.m(容量提取模块):

  • 从NASA电池数据集(B0005、B0006、B0007、B0018)中提取放电容量数据
  • 可视化展示四个电池的容量衰减曲线
  • 将容量数据导出为Excel文件供后续分析使用

main.m(主预测模块):

  • 使用Elman RNN神经网络进行电池剩余寿命预测
  • 以5号电池数据训练模型,6号电池数据测试模型
  • 实现电池容量的时间序列预测和剩余寿命评估

2. 算法步骤

数据预处理流程:

  1. 数据导入与清洗
  2. 放电容量数据提取
  3. 时间序列数据重构(滑动窗口)
  4. 数据归一化处理

RNN预测流程:

  1. 网络创建与参数设置
  2. 模型训练与验证
  3. 预测结果反归一化
  4. 多维度性能评估

3. 技术路线

核心技术:

  • RNN神经网络:具有反馈连接的递归神经网络
  • 时间序列预测:基于历史容量数据预测未来容量
  • 滑动窗口技术:kim=2(输入步长),zim=1(预测步长)

评估体系:

  • 回归分析、误差直方图
  • 多指标评估:RMSE、R²、MSE、MAE、MAPE、RPD、MBE
  • 可视化分析:雷达图、罗盘图、对比曲线

4. 参数设定

网络参数:

matlab 复制代码
kim = 2;        % 输入历史步长
zim = 1;        % 预测步长
hidden_neurons = 15;    % 隐藏层神经元
epochs = 100;           % 训练迭代次数
learning_rate = 0.01;   % 学习率
goal_error = 1e-6;      % 目标误差

寿命阈值:

matlab 复制代码
threshold = 1.4;    % 电池失效容量阈值

5. 运行环境

软件要求:

  • MATLAB R2023b或更高版本
  • 运行顺序:先执行rongliangtiqu.m,再执行main.m

完整代码私信回复基于RNN循环神经网络的锂电池剩余寿命预测Matlab实现

相关推荐
Dlkoiw4 小时前
CSMA(aloha)
matlab·aloha·csma·协议演进过程
机器学习之心5 小时前
基于双向时序卷积网络(BiTCN)与支持向量机(SVM)混合模型的时间序列预测代码Matlab源码
网络·支持向量机·matlab
MATLAB代码顾问6 小时前
MATLAB实现决策树数值预测
开发语言·决策树·matlab
qzhqbb15 小时前
神经网络 - 循环神经网络
人工智能·rnn·神经网络
民乐团扒谱机19 小时前
深入浅出理解克尔效应(Kerr Effect)及 MATLAB 仿真实现
开发语言·matlab·光学·非线性光学·克尔效应·kerr effect
leo__5201 天前
MATLAB实现高光谱分类算法
支持向量机·matlab·分类
民乐团扒谱机1 天前
脉冲在克尔效应下的频谱展宽仿真:原理与 MATLAB 实现
开发语言·matlab·光电·非线性光学·克尔效应
yuan199971 天前
基于扩展卡尔曼滤波的电池荷电状态估算的MATLAB实现
开发语言·matlab
chao1898441 天前
多光谱图像融合:IHS、PCA与小波变换的MATLAB实现
图像处理·计算机视觉·matlab
我爱C编程1 天前
基于无六环H校验矩阵和归一化偏移minsum算法的LDPC编译码matlab性能仿真
matlab·矩阵·ldpc·无六环·归一化偏移·minsum