基于物理引导粒子群算法的Si基GaN功率器件特性精准拟合

在高压功率电子领域,硅基氮化镓(GaN-on-Si)肖特基势垒二极管(SBD)因其优异的性能与成本优势展现出巨大潜力。然而,Si与GaN材料之间严重的晶格失配导致外延层中存在高密度缺陷,使得载流子输运机制趋于复杂,传统仿真手段难以精准再现其正向导通特性。能否深度解析缺陷物理并据此构建高精度模型,成为优化器件性能的关键。

1. Si GaN 肖特基二极管截面示意图

针对这一难题,天津赛米卡尔科技有限公司技术团队独辟蹊径,成功将器件物理机理与智能优化算法深度融合。技术团队基于前期在Si基GaN器件缺陷物理与导通机制方面的深厚积累,开发了一套物理引导的粒子群优化算法,并在APSYS仿真平台上实现了对AlGaN/GaN SBD正向IV特性的快速、精准拟合。该方法的核心在于利用物理经验知识约束优化算法的搜索空间,使智能拟合过程始终不偏离基本的物理规律。经该方法拟合后,开启电压与导通电阻等关键性能指标上表现卓越,为Si基GaN肖特基二极管在高要求场景下的应用奠定基础。

2. Si GaN 肖特基二极管正向 IV 曲线拟合结果

这项研究不仅成功实现了对Si基GaN SBD正向IV特性的高精度拟合,更深刻揭示了缺陷分布、界面态特性等物理参数与器件导通性能之间的内在关联, 彰显了物理机制与智能算法融合仿真在先进功率器件研究中的强大潜力。同时,该项研究开发的物理引导粒子群优化方法,还可以提升对GaN功率器件特性的拟合效率,为器件的精准设计、性能优化提供了强有力的新工具。这项工作充分证明,APSYS仿真平台结合智能算法,能够为科研人员深入探索半导体器件的物理极限、开发下一代高性能功率芯片提供关键的技术支撑。该方法论有望赋能新能源汽车、智能电网等关键领域,助力我国宽禁带半导体产业的高速发展。

相关推荐
千里马也想飞7 小时前
汉语言文学《朝花夕拾》叙事艺术研究论文写作实操:AI 辅助快速完成框架 + 正文创作
人工智能
玉梅小洋7 小时前
解决 VS Code Claude Code 插件「Allow this bash command_」弹窗问题
人工智能·ai·大模型·ai编程
肾透侧视攻城狮7 小时前
《解锁计算机视觉:深度解析 PyTorch torchvision 核心与进阶技巧》
人工智能·深度学习·计算机视觉模快·支持的数据集类型·常用变换方法分类·图像分类流程实战·视觉模快高级功能
一战成名9967 小时前
AI 模型持续集成流水线:CANN 支持的 DevOps 最佳实践
人工智能·ci/cd·devops
CoovallyAIHub7 小时前
让本地知识引导AI追踪社区变迁,让AI真正理解社会现象
深度学习·算法·计算机视觉
23遇见7 小时前
AI视角下的 CANN 仓库架构全解析:高效计算的核心
人工智能
CoderCodingNo7 小时前
【GESP】C++ 二级真题解析,[2025年12月]第一题环保能量球
开发语言·c++·算法
有趣的杰克7 小时前
开源|macOS 菜单栏 AI 启动器 GroAsk:⌥Space 一键直达 ChatGPT / Claude / Gemini
人工智能·macos·chatgpt
yumgpkpm7 小时前
预测:2026年大数据软件+AI大模型的发展趋势
大数据·人工智能·算法·zookeeper·kafka·开源·cloudera
星爷AG I8 小时前
11-2 距离知觉(AGI基础理论)
人工智能·agi