ML4T - 第7章第7节 逻辑回归拟合宏观数据Logistic Regression with Macro Data

目录

[一、Load Data 加载数据](#一、Load Data 加载数据)

1.数据解释

2.代码

[二、Data Prep 数据处理](#二、Data Prep 数据处理)

[三、Fit Model 拟合模型](#三、Fit Model 拟合模型)

[四、Analyze 结果分析](#四、Analyze 结果分析)


一、Load Data 加载数据

1.数据解释

Variable Description Transformation
realgdp Real gross domestic product(实际国内生产总值) Annual Growth Rate(年增长率)
realcons Real personal consumption expenditures(实际个人消费支出) Annual Growth Rate(年增长率)
realinv Real gross private domestic investment(实际私人国内总投资) Annual Growth Rate(年增长率)
realgovt Real federal expenditures & gross investment(实际联邦政府支出与总投资) Annual Growth Rate(年增长率)
realdpi Real private disposable income(实际私人可支配收入) Annual Growth Rate(年增长率)
m1 M1 nominal money stock(名义M1货币供应量) Annual Growth Rate(年增长率)
tbilrate Monthly treasury bill rate(月度国库券利率) Level(水平值)
unemp Seasonally adjusted unemployment rate (%)(季调失业率,单位:%) Level(水平值)
infl Inflation rate(通货膨胀率) Level(水平值)
realint Real interest rate(实际利率) Level(水平值)

通过

import statsmodels.api as sm

data = pd.DataFrame(sm.datasets.macrodata.load().data)

下载宏观数据,这里应该指的是美国的

2.代码

python 复制代码
%matplotlib inline
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style('whitegrid')

data = pd.DataFrame(sm.datasets.macrodata.load().data)
data.info()

data.head()

结果:

python 复制代码
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 203 entries, 0 to 202
Data columns (total 14 columns):
 #   Column    Non-Null Count  Dtype  
---  ------    --------------  -----  
 0   year      203 non-null    float64
 1   quarter   203 non-null    float64
 2   realgdp   203 non-null    float64
 3   realcons  203 non-null    float64
 4   realinv   203 non-null    float64
 5   realgovt  203 non-null    float64
 6   realdpi   203 non-null    float64
 7   cpi       203 non-null    float64
 8   m1        203 non-null    float64
 9   tbilrate  203 non-null    float64
 10  unemp     203 non-null    float64
 11  pop       203 non-null    float64
 12  infl      203 non-null    float64
 13  realint   203 non-null    float64
dtypes: float64(14)
memory usage: 22.3 KB

数据格式:

二、Data Prep 数据处理

为了获得一个二元目标变量,我们计算季度实际GDP年增长率的20个季度滚动平均值。然后,如果当前增长超过移动平均值,++我们将其分配为1,否则分配为0++。最后,我们移动指标变量,使下一季度的结果与当前季度对齐。

To obtain a binary target variable, we compute the 20-quarter rolling average of the annual growth rate of quarterly real GDP. We then assign 1 if current growth exceeds the moving average and 0 otherwise. Finally, we shift the indicator variables to align next quarter's outcome with the current quarter.

python 复制代码
data['growth_rate'] = data.realgdp.pct_change(4)
data['target'] = (data.growth_rate > data.growth_rate.rolling(20).mean()).astype(int).shift(-1)
data.quarter = data.quarter.astype(int)

data.target.value_counts()

data.tail()
python 复制代码
pct_cols = ['realcons', 'realinv', 'realgovt', 'realdpi', 'm1']
drop_cols = ['year', 'realgdp', 'pop', 'cpi', 'growth_rate']
data.loc[:, pct_cols] = data.loc[:, pct_cols].pct_change(4)

data = pd.get_dummies(data.drop(drop_cols, axis=1), columns=['quarter'], drop_first=True).dropna()

data.info()

data.head()
python 复制代码
<class 'pandas.core.frame.DataFrame'>
Index: 198 entries, 4 to 201
Data columns (total 13 columns):
 #   Column     Non-Null Count  Dtype  
---  ------     --------------  -----  
 0   realcons   198 non-null    float64
 1   realinv    198 non-null    float64
 2   realgovt   198 non-null    float64
 3   realdpi    198 non-null    float64
 4   m1         198 non-null    float64
 5   tbilrate   198 non-null    float64
 6   unemp      198 non-null    float64
 7   infl       198 non-null    float64
 8   realint    198 non-null    float64
 9   target     198 non-null    float64
 10  quarter_2  198 non-null    bool   
 11  quarter_3  198 non-null    bool   
 12  quarter_4  198 non-null    bool   
dtypes: bool(3), float64(10)
memory usage: 17.6 KB

三、Fit Model 拟合模型

python 复制代码
# model = sm.Logit(data.target, sm.add_constant(data.drop('target', axis=1)))  # bad code
model = sm.Logit(data.target, sm.add_constant(data.drop('target', axis=1).astype(float)))
result = model.fit()
result.summary()

注意,原作者代码已经失效,要加上数据转换才行:

model = sm.Logit(data.target, sm.add_constant(data.drop('target', axis=1))) # bad code

model = sm.Logit(data.target, sm.add_constant(data.drop('target', axis=1).astype(float)))

结果:

Optimization terminated successfully. Current function value: 0.342965 Iterations 8

| Dep. Variable: | target | No. Observations: | 198 |
| Model: | Logit | Df Residuals: | 185 |
| Method: | MLE | Df Model: | 12 |
| Date: | Wed, 01 Oct 2025 | Pseudo R-squ.: | 0.5022 |
| Time: | 11:27:45 | Log-Likelihood: | -67.907 |
| converged: | True | LL-Null: | -136.42 |

Covariance Type: nonrobust LLR p-value: 2.375e-23
[Logit Regression Results]

|---|------|---------|---|----------|---------|---------|
| | coef | std err | z | P>|z| | [0.025 | 0.975] |

四、Analyze 结果分析

McFadden Pseudo R² = 0.50, 模型效果还不错。

我们使用截距并将季度值转换为虚拟变量,并按照以下方式训练逻辑回归模型:

这为我们的模型生成了以下摘要,该模型有198个观测值和13个变量(注:12个变量+截距=13),包括截距:

摘要表明,该模型已使用最大似然法进行训练,并提供对数似然函数在-67.9处的最大值。

We use an intercept and convert the quarter values to dummy variables and train the logistic regression model as follows:

This produces the following summary for our model with 198 observations and 13 variables, including intercept: The summary indicates that the model has been trained using maximum likelihood and provides the maximized value of the log-likelihood function at -67.9.

python 复制代码
plt.rc('figure', figsize=(12, 7))
plt.text(0.01, 0.05, str(result.summary()), {'fontsize': 14}, fontproperties = 'monospace')
plt.axis('off')
plt.tight_layout()
plt.subplots_adjust(left=0.2, right=0.8, top=0.8, bottom=0.1)
plt.savefig('logistic_example.png', bbox_inches='tight', dpi=300);
相关推荐
西岭千秋雪_2 小时前
RAG核心特性:ETL
数据仓库·人工智能·spring boot·ai编程·etl
无风听海2 小时前
神经网络之Softmax激活函数求导过程
人工智能·深度学习·神经网络
youcans_2 小时前
【Trae】Trae 插件实战手册(1)PyCharm 安装 Trae
人工智能·python·pycharm·ai编程·trae
说私域3 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的引流爆款设计策略研究
人工智能·小程序
张较瘦_3 小时前
[论文阅读] AI + 软件工程 | 从“事后补救”到“实时防控”,SemGuard重塑LLM代码生成质量
论文阅读·人工智能·软件工程
IT古董3 小时前
【第五章:计算机视觉-项目实战之生成对抗网络实战】1.对抗生成网络原理-(1)对抗生成网络算法基础知识:基本思想、GAN的基本架构、应用场景、标注格式
人工智能·生成对抗网络·计算机视觉
MoRanzhi12033 小时前
0. NumPy 系列教程:科学计算与数据分析实战
人工智能·python·机器学习·数据挖掘·数据分析·numpy·概率论
PKNLP3 小时前
逻辑回归(Logistic Regression)
算法·机器学习·逻辑回归
、、、、南山小雨、、、、3 小时前
Pytorch强化学习demo
pytorch·深度学习·机器学习·强化学习