第三章 神经网络

神经网络结构

输入层->中间层(隐藏层)->输出层

神经网络与感知机的差异

向下一个神经元发送信号时,改变信号的激活函数有很大差异。

神经网络中使用的是平滑变化的sigmoid函数,而感知机中使用的是信号急剧变化的阶跃函数。

激活函数

激活函数将输入信号的总和转换为输出信号

作用在于决定如何来激活输入信号的总和

sigmoid函数

python 复制代码
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

不管输入信号有多小,或者有多大,输出信号都在0到1之间

为了发挥叠加层所带来的有事,激活函数必须使用非线性函数

ReLU函数

ReLU函数在输入大于0 时,直接输出该值;在输入小于等于0 时,输出0

python 复制代码
def relu(x):
    return np.maximum(0, x)

使用np.dot计算矩阵的点积

关于输出层的激活函数

分类问题是数据属于哪一个类别的问题,而回归问题是根据某个输入预测一个(连续的)数值的问题

需要根据情况改变输出层的激活函数。回归问题用恒等函数,分类问题用softmax 函数

softmax函数

python 复制代码
def softmax(a):
    c = np.max(a)
    exp_a = np.exp(a - c) # 溢出对策
    sum_exp_a = np.sum(exp_a)
    y = exp_a / sum_exp_a
        return y

softmax函数的输出是0.0 到1.0之间的实数。并且,softmax函数的输出值的总和是1

因为有了这个性质,我们才可以把softmax 函数的输出解释为"概率"

输出层的神经元数量需要根据待解决的问题来决定。对于分类问题,输出层的神经元数量一般设定为类别的数量

输入数据的集合称为批,通过批处理可以实现计算机高速运算

sigmoid函数和softmax函数的区别和联系

多标签分类任务使用softmax函数

二分类任务使用sigmoid函数

相关推荐
愚公搬代码10 分钟前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
静听松涛13315 分钟前
中文PC端多人协作泳道图制作平台
大数据·论文阅读·人工智能·搜索引擎·架构·流程图·软件工程
学历真的很重要35 分钟前
LangChain V1.0 Context Engineering(上下文工程)详细指南
人工智能·后端·学习·语言模型·面试·职场和发展·langchain
IT=>小脑虎36 分钟前
Python零基础衔接进阶知识点【详解版】
开发语言·人工智能·python
UnderTurrets43 分钟前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
koo3641 小时前
pytorch深度学习笔记13
pytorch·笔记·深度学习
黄焖鸡能干四碗1 小时前
智能制造工业大数据应用及探索方案(PPT文件)
大数据·运维·人工智能·制造·需求分析
高洁011 小时前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
世岩清上1 小时前
乡村振兴主题展厅本土化材料运用与地域文化施工表达
大数据·人工智能·乡村振兴·展厅
工藤学编程1 小时前
零基础学AI大模型之LangChain智能体执行引擎AgentExecutor
人工智能·langchain