AI 大模型应用中的图像,视频,音频的处理

该技术的核心目标是为大模型训练(如多模态预训练)、业务应用(如智能客服多模态交互、机器人视觉感知)提供高质量、可复用的数据集,减少人工干预成本。

具体要实现的内容是:

  1. 标准化处理
  2. 质量优化

1.标准化处理

① 统一多源数据格式

图像: 格式/尺寸统一(常用PNG/JPEG/WebP格式)

复制代码
可以使用 FFmpeg /ImageMagick  进行裁剪和格式转换
(TensorFlow框架下使用TFRecord)

音频: 格式/音频编码/采样率/深度位/声道数等(常用WAV)

(高精度下(语音合成,音乐生成)不建议用mp3)

复制代码
音频转换可以使用FFmpeg 

视频: 优先使用mp4

需要统一,格式,解码标准,分辨率,帧率,时长,音视频同步与分离

复制代码
视频处理 可以使用ffmpeg

ffmpeg资源消耗比较大,处理速度比较慢

优化方案有

  1. 硬件加速

    NVIDIA GPU 加速(CUDA)

    Intel 核显加速(QSV 技术)

    AMD GPU 加速(AMF 技术)

  2. 参数级优化,减少冗余计算,提升 CPU 利用率

    启用多线程并行处理

    简化输出格式与压缩参数(避免复杂压缩算法)

    跳过不必要的步骤(如: 禁用音频处理)

  3. 批量处理与预处理策略

    批量处理工具替代循环, 避免用 for 循环单文件处理,频繁启动 FFmpeg 进程耗时,Linux/macOS用xargs ,Python 脚本结合 subprocess 模块多进程处理

    预处理:提前解码与缓存(若处理视频抽帧后的图片,可先将视频一次性解码为原始帧序列(如 BMP),再批量处理(避免重复解码视频))

    降低输入分辨率(如果可以)

2. 质量优化 (简单了解一下流程)

对图/音/视频进行质量检测/筛选

  1. 数据筛选:剔除模糊(图像低分辨率)、异常(视频花屏、音频噪音)、重复数据
  2. 质量修复:图像去噪 / 去模糊、视频稳帧(消除抖动)、音频降噪 / 回声消除
  3. 标注校验:修正多模态数据标注错误(如图像边界框偏移、音频文本对齐偏差)
相关推荐
CoderIsArt9 小时前
三大主流智能体框架解析
人工智能
民乐团扒谱机9 小时前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Coder_Boy_9 小时前
Deeplearning4j+ Spring Boot 电商用户复购预测案例中相关概念
java·人工智能·spring boot·后端·spring
芷栀夏9 小时前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann
L543414469 小时前
告别代码堆砌匠厂架构让你的系统吞吐量翻倍提升
大数据·人工智能·架构·自动化·rpa
孤狼warrior9 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
凯子坚持 c9 小时前
构建企业级 AI 工厂:基于 CANN `cann-mlops-suite` 的端到端 MLOps 实战
人工智能
Elwin Wong9 小时前
浅析OpenClaw:从“贾维斯”梦想看下一代 AI 操作系统的架构演进
人工智能·agent·clawdbot·moltbot·openclaw
Rorsion9 小时前
PyTorch实现线性回归
人工智能·pytorch·线性回归
AI资源库9 小时前
OpenClaw:159K Star的开源AI助手正在重新定义“个人AI“的边界
人工智能·语言模型