1. AVL的概念
- AVL树是最先发明的自平衡二叉查找树,AVL是一颗空树,或者具备下列性质的二叉搜索树:它的 左右子树都是AVL树,且左右子树的高度差的绝对值不超过1。AVL树是⼀颗高度平衡搜索二叉树, 通过控制高度差去控制平衡。
- AVL树实现这里我们引入一个平衡因子(balance factor)的概念,每个结点都有⼀个平衡因子,任何 结点的平衡因子等于右子树的高度减去左子树的高度,也就是说任何结点的平衡因子等于0/1/-1, AVL树并不是必须要平衡因子,但是有了平衡因子可以更方便我们去进行观察和控制树是否平衡, 就像⼀个风向标⼀样。
- 思考⼀下为什么AVL树是高度平衡搜索二叉树,要求高度差不超过1,而不是高度差是0呢?0不是更好的平衡吗?画画图分析我们发现,不是不想这样设计,而是有些情况是做不到高度差是0的。比如一棵树是2个结点,4个结点等情况下,高度差最好就是1,无法做到高度差是0
- AVL树整体结点数量和分布和完全二叉树类似,高度可以控制在,那么增删查改的效率也可以控制在,相比二叉搜索树有了本质的提升。

2. AVL树的实现
2.1 AVL树的结构
cpp
template<class K, class V>
struct AVLTreeNode
{
// 需要parent指针,后续更新平衡因⼦可以看到
pair<K, V> _kv;
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
int _bf; // balance factor
AVLTreeNode(const pair<K, V>& kv)
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _bf(0)
{
}
};
template<class K, class V>
class AVLTree
{
typedef AVLTreeNode<K, V> Node;
public:
//...
private:
Node* _root = nullptr;
};
2.2 AVL树的插入
2.2.1 AVL树插入一个值的大概过程
- 插入一个值按二叉搜索树规则进行插入
- 新增结点以后,只会影响祖先结点的高度,也就是可能会影响部分祖先结点的平衡因子,所以更新从新增结点->根结点路径上的平衡因子,实际中最坏情况下要更新到根,有些情况更新到中间就可以停止了,具体情况我们下面再详细分析
- 更新平衡因子过程中没有出现问题,则插入结束
- 更新平衡因子过程中出现不平衡,对不平衡子树旋转,旋转后本质调平衡的同时,本质降低了子树 的高度,不会再影响上一层,所以插入结束。
2.2.2 平衡因子更新
更新原则:
平衡因子 = 右子树高度-左子树高度
只有子树高度变化才会影响当前结点平衡因子。
插入结点,会增加高度,所以新增结点在parent的右子树,parent的平衡因子++,新增结点在 parent的左子树,parent平衡因子--
parent所在子树的高度是否变化决定了是否会继续往上更新
更新停止条件:更新后parent的平衡因子等于0 ,更新中parent的平衡因子变化为-1->0 或者 1->0,说明更新前parent子树一边高一边低,新增的结点插入在低的那边,插入后parent所在的子树高度不变 ,不会影响parent的父亲结点的平衡因子,更新结束。
更新后parent的平衡因子等于1 或 -1 ,更新前更新中parent的平衡因子变化为0->1 或者 0->-1,说明更新前parent子树两边一样高,新增的插入结点后,parent所在的子树一边高一边低,parent所在的子树符合平衡要求,但是高度增加了1,会影响parent的父亲结点的平衡因子,所以要继续向上更新。
更新后parent的平衡因子等于2 或 -2 ,更新前更新中parent的平衡因子变化为1->2 或者 -1->-2,说 明更新前parent子树一边高一边低,新增的插入结点在高的那边,parent所在的子树高的那边更高了,破坏了平衡,parent所在的子树不符合平衡要求,需要旋转处理 ,旋转的目标有两个:(1)把 parent子树旋转平衡。(2)降低parent子树的高度,恢复到插入结点以前的高度。所以旋转后也不需要继续往上更新,插入结束。
不断更新,更新到根,跟的平衡因子是 1 或 -1 也停止了。
cpp
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
// 更新平衡因⼦
while (parent)
{
// 更新平衡因⼦
if (cur == parent->_left)
parent->_bf--;
else
parent->_bf++;
if (parent->_bf == 0)
{
// 更新结束
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
// 继续往上更新
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
// 不平衡了,旋转处理
break;
}
else
{
assert(false);
}
}
return true;
}
2.3 旋转
2.3.1 旋转的原则
- 保持搜索树的规则
- 让旋转的树从不满足变平衡,其次降低旋转树的⾼度
旋转总共分为四种,左单旋/右单旋/左右双旋/右左双旋。
说明:下面的图中,有些结点我们给的是具体值,如10和5等结点,这里是为了方便讲解,实际中是什 么值都可以,只要大小关系符合搜索树的性质即可。
2.3.2 右单旋
本图1展示的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要 求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a/b/c是高度为h的子树, 是⼀种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体图2/图3/图4/ 图5进行了详细描述。
在a子树中插入一个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平 衡因子从-1变成-2,10为根的树左右高度差超过1,违反平衡规则。10为根的树左边太高了,需要 往右边旋转,控制两棵树的平衡。
旋转核心步骤,因为5<b子树的值<10,将b变成10的左子树,10变成5的右子树,5变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h+2,符合旋转原 则。如果插入之前10整棵树的一个局部子树,旋转后不会再影响上一层,插入结束了。

图一

图二

图三

图四

图五
2.3.3 右单旋代码实现
cpp
void RotateR(Node* parent)
{
//存储指针
Node* subL = parent->_left;
Node* subLR = subL->_right;
//保存parent的父节点
Node* parentParent = parent->_parent;
//旋转
parent->_left = subLR;
if (subLR != nullptr)
subLR->_parent = parent;
subL->_right = parent;
parent->_parent = subL;
//判断旋转后,是不是根节点
if (parent == _root)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parentParent->_left == parent)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
parent->_bf = subL->_bf = 0;
}
2.3.4 左单旋
本图6展示的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要 求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a/b/c是高度为h的子树, 是一种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体跟上⾯左旋类 似。
在a子树中插入一个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平 衡因子从1变成2,10为根的树左右高度差超过1,违反平衡规则。10为根的树右边太高了,需要往 左边旋转,控制两棵树的平衡。
旋转核步步骤,因为10<b子树的值<15,将b变成10的右子树,10变成15的左子树,15变成这棵 树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h+2,符合旋转 原则。如果插入之前10整棵树的⼀个局部子树,旋转后不会再影响上一层,插入结束了。

图六
2.3.5 左单旋代码实现
cpp
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
Node* parentParent = parent->_parent;
parent->_right = subRL;
if(subRL)
subRL->_parent = parent;
subR->_left = parent;
parent->_parent = subR;
if (parent == _root)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parentParent->_left == parent)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
subR->_bf = parent->_bf = 0;
}
2.3.6 左右双旋
通过图7和图8可以看到,左边高时,如果插入位置不是在a子树,而是插入在b子树,b子树高度从h变 成h+1,引发旋转,右单旋无法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的纯粹的左边高,但是插入在b子树中,10为跟的子树不再是单纯的左边高,对于10是左边高,但是对于5是右边高,需要用两次旋转才能解决,以5为旋转点进行一个左单旋,以10为旋转点进行一个右单旋,这棵树这棵树就平衡了。

图七

图八
图7和图8分别为左右双旋中h==0和h==1具体场景分析,下面我们将a/b/c子树抽象为高度h的AVL 子树进行分析,另外我们需要把b子树的细节进⼀步展开为8和左子树高度为h-1的e和f子树,因为 我们要对b的父亲5为旋转点进行左单旋,左单旋需要动b树中的左子树。b子树中新增结点的位置 不同,平衡因子更新的细节也不同,通过观察8的平衡因子不同,这里我们要分三个场景讨论。
场景1:h >= 1时,新增结点插入在e子树,e子树高度从h-1并为h并不断更新8->5->10平衡因子, 引发旋转,其中8的平衡因子为-1,旋转后8和5平衡因子为0,10平衡因⼦为1。
场景2:h >= 1时,新增结点插⼊在f子树,f子树高度从h-1变为h并不断更新8->5->10平衡因子,引 发旋转,其中8的平衡因子为1,旋转后8和10平衡因子为0,5平衡因子为-1。
场景3:h == 0时,a/b/c都是空树,b自己就是一个新增结点,不断更新5->10平衡因子,引发旋 转,其中8的平衡因子为0,旋转后8和10和5平衡因子均为0。

图九
2.3.7左右双旋代码实现
cpp
//左右双旋
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
//记录平衡因子
//通过subLR的bf来判断情况
int bf = subLR->_bf;
RotateLR(subL);
RotateR(parent);
if (bf == 0)
{
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 0;
}
else if(bf == 1)
{
subL->_bf = -1;
subLR->_bf = 0;
parent->_bf = 0;
}
else if (bf == -1)
{
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 1;
}
else
{
assert(false);
}
}
2.3.8 右左双旋
跟左右双旋类似,下面我们将a/b/c子树抽象为高度h的AVL子树进行分析,另外我们需要把b子树的 细节进⼀步展开为12和左子树高度为h-1的e和f子树,因为我们要对b的父亲15为旋转点进行右单 旋,右单旋需要动b树中的右子树。b子树中新增结点的位置不同,平衡因子更新的细节也不同,通 过观察12的平衡因子不同,这里我们要分三个场景讨论。
场景1:h>=1时,新增结点插入在e子树,e子树高度从h-1变为h并不断更新12->15->10平衡因 子,引发旋转,其中12的平衡因子为-1,旋转后10和12平衡因子为0,15平衡因子为1。
场景2:h>=1时,新增结点插入在f子树,f子树高度从h-1变为h并不断更新12->15->10平衡因子, 引发旋转,其中12的平衡因子为1,旋转后15和12平衡因子为0,10平衡因子为-1。
场景3:h==0时,a/b/c都是空树,b自己就是⼀个新增结点,不断更新15->10平衡因子,引发旋 转,其中12的平衡因子为0,旋转后10和12和15平衡因子均为0。

图十
2.3.9 右左双旋代码实现
cpp
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(subR);
RotateL(parent);
if (bf == 0)
{
subR->_bf = 0;
subRL->_bf = 0;
parent->_bf = 0;
}
else if (bf == 1)
{
subR->_bf = 0;
subRL->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
subR->_bf = 1;
subRL->_bf = 0;
parent->_bf = 0;
}
else
{
assert(false);
}
}
2.4 AVL树的查找
按照二叉搜索树逻辑实现即可,搜索效率为O(logN)
cpp
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < key)
{
cur = cur->_right;
}
else if (cur->_kv.first > key)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
2.5 AVL树平衡检测
我们实现的AVL树是否合格,我们通过检查左右⼦树⾼度差的的程序进⾏反向验证,同时检查⼀下结点 的平衡因⼦更新是否出现了问题。
cpp
bool _IsBalanceTree(Node* root)
{
if (root == nullptr)
{
return true;
}
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
int bf = rightHeight - leftHeight;
if (abs(bf) >= 2||bf!=root->_bf)
{
cout << root->_kv.first << "平衡因子异常" << endl;
return false;
}
return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}