深度学习基础:Tensor(张量)的创建方法详解

文章目录

    • 一、什么是张量(Tensor)?
    • 二、张量的创建方法
      • [1️⃣ 直接创建张量(从列表或数据生成)](#1️⃣ 直接创建张量(从列表或数据生成))
      • [2️⃣ 使用 `torch.zeros()`、`torch.ones()`、`torch.full()` 创建固定值张量](#2️⃣ 使用 torch.zeros()torch.ones()torch.full() 创建固定值张量)
      • [3️⃣ 使用 `torch.arange()`、`torch.linspace()` 创建序列张量](#3️⃣ 使用 torch.arange()torch.linspace() 创建序列张量)
      • [4️⃣ 使用 `torch.rand()`、`torch.randn()` 创建随机张量](#4️⃣ 使用 torch.rand()torch.randn() 创建随机张量)
      • [5️⃣ 使用 `torch.eye()` 创建单位矩阵](#5️⃣ 使用 torch.eye() 创建单位矩阵)
      • [6️⃣ 从 NumPy 数组创建张量](#6️⃣ 从 NumPy 数组创建张量)
      • [7️⃣ 创建与现有张量形状相同的新张量](#7️⃣ 创建与现有张量形状相同的新张量)
    • 三、张量创建总结表
    • [📚 参考资料](#📚 参考资料)

一、什么是张量(Tensor)?

简单来说,张量就是多维数组(multi-dimensional array)

在 PyTorch 中,torch.Tensor 是一个包含数值的多维容器,可以存放在 CPU 或 GPU 上。

具体内容请参考深度学习中的张量(Tensor)入门-CSDN博客

种类 示例 维度
标量(Scalar) torch.tensor(5) 0D
向量(Vector) torch.tensor([1,2,3]) 1D
矩阵(Matrix) torch.tensor([[1,2],[3,4]]) 2D
三维及以上张量 torch.randn(2,3,4) 3D+

二、张量的创建方法

在 PyTorch 中,有多种方式可以创建张量。

下面按类型详细介绍。


1️⃣ 直接创建张量(从列表或数据生成)

  1. 最基础的方式是使用 torch.tensor() 直接从 Python 列表或嵌套列表创建。
python 复制代码
import torch

# 从列表创建张量
x = torch.tensor([1, 2, 3])
print(x)

# 从嵌套列表创建二维张量
m = torch.tensor([[1, 2], [3, 4]])
print(m)

注意

  • 默认数据类型为 torch.float32torch.int64(取决于输入类型)。
  • 可以通过 dtype 参数指定类型:
  1. 也可以使用 torch.Tensor(size) 创建指定形状的张量
python 复制代码
import torch

# 创建指定形状的张量,默认类型为float32
tensor1 = torch.Tensor(3, 2, 4)
print(tensor1)
print(tensor1.dtype)

# 也可以用来创建指定内容的张量
tensor2 = torch.Tensor([[1, 2, 3, 4], [5, 6, 7, 8]])
print(tensor2)
  1. 下边是以上两种方式创建指定类型的张量、

可通过torch.IntTensor()torch.FloatTensor()等创建。

或在torch.tensor()中通过dtype参数指定类型。

python 复制代码
import torch

# 创建int16类型的张量
tensor1 = torch.ShortTensor(2, 2)
tensor2 = torch.tensor([1, 2, 3], dtype=torch.int16)
print(tensor1, tensor1.dtype)
print(tensor2, tensor1.dtype)

# 创建int32类型的张量
tensor1 = torch.IntTensor(2, 3)
tensor2 = torch.tensor([3, 4, 5], dtype=torch.int32)
print(tensor1)
print(tensor2)

# 元素类型不匹配则会进行类型转换
tensor1 = torch.IntTensor([1.1, 2.2, 3.6])
tensor2 = torch.tensor([3.1, 2.2, 1.6], dtype=torch.int32)
print(tensor1)
print(tensor2)

# 创建float32类型的张量
tensor1 = torch.FloatTensor([7, 8, 9])
tensor2 = torch.tensor([1, 2, 3], dtype=torch.float32)
print(tensor1, tensor1.dtype)
print(tensor2, tensor1.dtype)

# 创建float64类型的张量
tensor1 = torch.DoubleTensor(2, 3, 1)
tensor2 = torch.tensor([1, 2, 3], dtype=torch.float64)
print(tensor1)
print(tensor2)

2️⃣ 使用 torch.zeros()torch.ones()torch.full() 创建固定值张量

这类函数非常常用,常用于初始化权重、偏置等。

python 复制代码
# 全零张量
z = torch.zeros((2, 3))
print(z)

# 全一张量
o = torch.ones((2, 3))
print(o)

# 固定值张量
f = torch.full((2, 3), 7)
print(f)

3️⃣ 使用 torch.arange()torch.linspace() 创建序列张量

适合生成规律性的数值序列,是一种指定区间的张量创建。

python 复制代码
# arange: 从 start 到 end(不含 end),步长 step
a = torch.arange(0, 10, 2)
print(a)  # [0, 2, 4, 6, 8]

# linspace: 从 start 到 end,均匀生成 num 个数
b = torch.linspace(0, 1, steps=5)
print(b)  # [0., 0.25, 0.5, 0.75, 1.]

4️⃣ 使用 torch.rand()torch.randn() 创建随机张量

随机张量是深度学习中最常见的初始化方式。

python 复制代码
# [0, 1) 均匀分布
u = torch.rand((2, 3))
print(u)

# 标准正态分布(均值0,方差1),n即normal,代表正态分布
n = torch.randn((2, 3))
print(n)

如果需要指定分布参数,可以使用:

python 复制代码
# 自定义均值和方差
normal = torch.normal(mean=0, std=1, size=(3, 3))

5️⃣ 使用 torch.eye() 创建单位矩阵

在矩阵计算(如线性代数)中非常常用。

python 复制代码
I = torch.eye(3)
print(I)
# 输出:
# tensor([[1., 0., 0.],
#         [0., 1., 0.],
#         [0., 0., 1.]])

6️⃣ 从 NumPy 数组创建张量

PyTorch 与 NumPy 可以方便地相互转换。

python 复制代码
import numpy as np

# NumPy -> Tensor
np_arr = np.array([[1, 2], [3, 4]])
t = torch.from_numpy(np_arr)
print(t)

# Tensor -> NumPy
back = t.numpy()
print(back)

这在数据预处理阶段尤其常见。


7️⃣ 创建与现有张量形状相同的新张量

可以使用以下方法快速创建"形状一致"的张量:

python 复制代码
x = torch.tensor([[1, 2, 3], [4, 5, 6]])

# 与 x 形状相同的全零张量
z = torch.zeros_like(x)

# 与 x 形状相同的全一张量
o = torch.ones_like(x)

# 与 x 形状相同的随机张量
r = torch.rand_like(x, dtype=torch.float)

三、张量创建总结表

方法 功能 示例
torch.tensor(data) 从列表创建张量 torch.tensor([[1,2],[3,4]])
torch.zeros(size) 创建全零张量 torch.zeros((3,3))
torch.ones(size) 创建全一张量 torch.ones((2,4))
torch.full(size, val) 创建固定值张量 torch.full((2,2), 9)
torch.arange(start, end, step) 按步长创建序列 torch.arange(0, 10, 2)
torch.linspace(start, end, steps) 均匀取样序列 torch.linspace(0, 1, 5)
torch.rand(size) 均匀随机分布 torch.rand((2,3))
torch.randn(size) 标准正态分布 torch.randn((2,3))
torch.eye(n) 单位矩阵 torch.eye(3)
torch.from_numpy(arr) 从 NumPy 创建 torch.from_numpy(np_arr)
torch.zeros_like(t) 与张量形状相同 torch.zeros_like(x)

📚 参考资料

相关推荐
易知微EasyV数据可视化4 分钟前
数字孪生+AI:头部能源企业-监测光伏产品生命周期,驱动绿色智造零碳未来
人工智能·经验分享·能源·数字孪生
Rorsion4 分钟前
机器学习概述(概念+分类)
人工智能·机器学习
黎阳之光5 分钟前
黎阳之光:以科技之力赋能城市更新,共筑高品质示范之城
大数据·人工智能·科技
AI营销前沿7 分钟前
原圈科技AI市场分析榜单:2026年如何打破数据孤岛,实现营销增长300%?
大数据·人工智能
(; ̄ェ ̄)。7 分钟前
机器学习入门(十六)集成学习,GBDT,XGBoost
人工智能·机器学习·集成学习
weixin_5498083612 分钟前
2026中国AI招聘系统选型指南:从“效率工具”到“智能体协同”的跃迁
人工智能
zlt200017 分钟前
从Prompt工程到Skill工程:Agent Skills开放标准彻底改变了AI协作方式
人工智能·ai·agent skill
咚咚王者20 分钟前
人工智能之核心技术 深度学习 第九章 框架实操(PyTorch / TensorFlow)
人工智能·pytorch·深度学习
天空属于哈夫克321 分钟前
外部群自动化:将 RPA 从“群发工具”进化为私域“情报感知系统”
人工智能·自然语言处理
AI人工智能+22 分钟前
联机手写签名识别技术通过采集书写时的压力、速度、轨迹等动态特征,构建独特的“行为指纹“
深度学习·联机手写签名识别·手写签名识别