机器学习(8)梯度下降的实现与过拟合问题

一、梯度下降的实现(Gradient Descent Implementation)

在训练模型时,我们的目标是最小化代价函数(Cost Function)

梯度下降是一种常用的优化算法,通过不断调整参数 w,b,让代价函数 J(w,b) 逐渐逼近最小值。

1. 算法思想

梯度下降算法的核心思想是:

从某一点出发,沿着函数下降最快的方向(即负梯度方向)前进,直到到达最小值。

更新规则为:

其中:

  • α 为 学习率(Learning Rate)

  • 梯度(Gradient)

2. 线性回归与逻辑回归中的区别

虽然线性回归与逻辑回归都使用梯度下降算法,但它们的代价函数与导数不同:

模型 预测函数 代价函数 特点
线性回归 使用平方误差,函数为凸函数
逻辑回归 使用对数损失,函数为凸函数

二者的梯度下降形式一致,但梯度计算方式不同。


二、过拟合的问题(Overfitting Problem)

1. 概念

过拟合(Overfitting) 是指模型在训练数据上表现很好,但在测试数据上表现很差。即模型"记住"了训练数据的特征,而没有学会通用的规律。

2. 举例说明

假设我们要使用线性模型预测房价。

面积(x) 房价(y)
50 100
60 120
70 140
80 160
90 180
  • 使用线性回归模型(一次多项式):

    → 模型可能欠拟合(Underfitting),无法捕捉复杂变化。

  • 使用二次多项式模型

    → 更好地拟合数据,误差降低。

  • 使用四次多项式模型

    → 几乎完美地通过每个点(训练误差为0),但在新样本上波动剧烈,泛化能力极差。

这就是典型的过拟合现象

同样地,过拟合问题也会出现在分类任务中。例如:

  • 模型在训练集上能精确分类每个点;

  • 但在测试集上预测错误率非常高。


三、解决过拟合的方法(How to Reduce Overfitting)

方法一:增加训练数据

获取更多样化的训练数据,能帮助模型学习到更真实的分布,减少过度拟合噪声的风险。

方法二:减少特征数量

  • 移除不相关或冗余特征;

  • 避免使用过高阶多项式;

  • 选择有代表性的关键特征。

这相当于"让模型变简单",降低复杂度。

方法三:正则化(Regularization)

正则化是一种通过约束参数大小来防止过拟合的方法。我们不直接删除特征,而是让参数的值尽量小。

1. 正则化思想

在代价函数中加入一个"惩罚项",鼓励参数 wiw_iwi​ 变小。

其中:

  • λ 是正则化参数(Regularization Parameter)

  • 惩罚项 防止权重过大

2. 正则化更新规则(线性回归)

方法四:特征选择(Feature Selection)

有些情况下,我们可以直接去除权重较小或不重要的特征(相当于让参数为0),进一步简化模型。


总结

过拟合原因 解决思路
模型太复杂 减少特征数量、使用正则化
数据太少 增加训练样本
参数太多 使用较小的多项式或正则化项
学习噪声 数据清洗、平滑处理
相关推荐
综合热讯3 小时前
微软Office下线“重用幻灯片”功能,WPS反向升级:AI让旧功能焕新生
人工智能·microsoft·wps
xinyu_Jina4 小时前
FIRE之旅 财务计算器:金融独立模型中的复利可视化与敏感性分析
人工智能·程序人生·信息可视化·金融·程序员创富
工藤学编程4 小时前
零基础学AI大模型之Milvus核心:分区-分片-段结构全解+最佳实践
人工智能·milvus
caijingshiye5 小时前
九科信息企业自动化智能体:打破知行割裂,让AI真正动手干活
运维·人工智能·自动化
码农很忙5 小时前
OpenAI GPT-5.1正式发布:智商情商双突破,开启AI交互新时代
人工智能
袁洛施5 小时前
Claude Code 深度解析:架构、工作原理与常见误解
人工智能·架构
fie88896 小时前
基于MATLAB实现的Elman神经网络用于电力负载预测
神经网络·机器学习·matlab
Funny_AI_LAB6 小时前
李飞飞联合杨立昆发表最新论文:超感知AI模型从视频中“看懂”并“预见”三维世界
人工智能·算法·语言模型·音视频
数据皮皮侠10 小时前
区县政府税务数据分析能力建设DID(2007-2025)
大数据·数据库·人工智能·信息可视化·微信开放平台
极小狐11 小时前
比 Cursor 更丝滑的 AI DevOps 编程智能体 - CodeRider-Kilo 正式发布!
运维·人工智能·devops