<项目代码>yolo螺丝螺母识别<目标检测>

项目代码下载链接

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情请阅读博主写的博客

数据集简介https://blog.csdn.net/qq_53332949/article/details/153988109?spm=1011.2415.3001.5331

数据集下载链接:

点击下载数据集https://download.csdn.net/download/qq_53332949/92213031

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone

  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
  • Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
  • Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

3.8 识别效果图

相关推荐
全息数据2 分钟前
WSL2 中将 Ubuntu 20.04 升级到 22.04 的详细步骤
深度学习·ubuntu·wsl2
机器之心5 分钟前
小米开源首个跨域具身基座模型MiMo-Embodied,29个榜单SOTA
人工智能·openai
六行神算API-天璇13 分钟前
架构实战:打造基于大模型的“混合搜索”系统,兼顾关键词与语义
人工智能·架构
0思必得015 分钟前
[Web自动化] HTTP/HTTPS协议
前端·python·http·自动化·网络基础·web自动化
龙卷风040527 分钟前
深入理解Spring AI Alibaba多Agent系统:图结构驱动的智能协作
人工智能·后端
mqiqe31 分钟前
【Spring AI MCP】四、MCP 服务端
java·人工智能·spring
好奇龙猫35 分钟前
【AI学习-lora-定义-comfyUI相关-相关学习-了解概念(1)】
人工智能·学习
Jay20021111 小时前
【机器学习】10 正则化 - 减小过拟合
人工智能·机器学习
sxwuyanzu1 小时前
企业知识库的隐形危机:从“文档堆“到“知识系统“的进化之路
人工智能
5***79001 小时前
人工智能在环保监测中的数据分析
人工智能