<项目代码>yolo织物缺陷识别<目标检测>

项目代码下载链接

点击下载项目代码https://download.csdn.net/download/qq_53332949/92236413YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情请阅读博主写的博客

<数据集>yolo织物缺陷识别数据集<目标检测>https://blog.csdn.net/qq_53332949/article/details/154251504?spm=1011.2415.3001.5331数据集下载链接:

点击下载数据集https://download.csdn.net/download/qq_53332949/92236404数据集类别信息:

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone

  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
  • Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
  • Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 F1_curve

3.5 confusion_matrix

3.6 confusion_matrix_normalized

3.7 识别效果图

相关推荐
深圳博众测控1 天前
博众测控 | ISO 16750-2:2023汽车电气测试新标准解读:关键变化与测试设备选型
人工智能·测试工具·汽车
Dfreedom.1 天前
图像灰度处理与二值化
图像处理·人工智能·opencv·计算机视觉
前网易架构师-高司机1 天前
带标注信息的手机识别数据集,92.8%识别率,可识别户外公共场所的人是否带手机,支持yolo, coco json,pascal voc xml格式
yolo·手机·数据集·公共·户外·携带
老兵发新帖1 天前
关于ONNX和pytorch,我们应该怎么做?结合训练和推理
人工智能
方安乐1 天前
杂记:对齐研究(AI alignment)
人工智能
方见华Richard1 天前
世毫九《认知几何学修订版:从离散概念网络到认知拓扑动力学》
人工智能·经验分享·交互·原型模式·空间计算
我什么都学不会1 天前
Python练习作业3
开发语言·python
人工智能培训1 天前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·深度学习·机器学习·transformer·知识图谱·数字孪生·大模型幻觉
板面华仔1 天前
机器学习入门(二)——逻辑回归 (Logistic Regression)
python·机器学习
Hgfdsaqwr1 天前
使用Flask快速搭建轻量级Web应用
jvm·数据库·python