Transformer:Decoder 中,Cross-Attention 所用的 K(Key)和 V(Value)矩阵,是如何从 Encoder 得到的

🎯 核心结论(先说答案)

Decoder 中 Cross-Attention 的 K 和 V,就是 Encoder 的最终输出(即最后一层 Encoder 的输出),再分别乘以两个可学习的权重矩阵 得到的。

换句话说:

K 和 V 不是直接拿 Encoder 输出当 K/V,而是对 Encoder 输出做线性变换后得到的。


🧱 详细步骤分解

假设:

  • 输入句子(Source):"The cat sat" → 3 个 token
  • 词向量维度:
  • 注意力头数:,每头维度

第一步:Encoder 处理输入

  1. 输入经过 词嵌入 + 位置编码
  2. 经过 6 层 Encoder(每层:Self-Attention + FFN + Add & Norm)
  3. 得到 Encoder 最终输出
    • ,每个 是"上下文感知"的表示

✅ 这个 H 就是 Decoder 要"参考"的全部源信息。


第二步:Decoder 的 Cross-Attention 使用 生成 K 和 V

在 Decoder 的每一层中,Cross-Attention 子层会做以下操作:

1. 对 Encoder 输出 做线性变换
  • 使用两个可学习的权重矩阵 (属于 Decoder 的参数,但作用在 上):

🔍 注意:虽然 是 Decoder 的参数,但它们的输入是 Encoder 的输出

2. (可选)拆分为多头
  • 拆成 8 个头:
    • 实际实现中,通常用一个大矩阵 输出 512 维,再 reshape 成 (8, 64)

第三步:与 Decoder 的 Query 配合计算注意力

  • Decoder 的 Query 来自其上一层输出(记为 ):
  • 然后计算 Cross-Attention:

🌟 关键点

  • 表示"Decoder 当前想问什么"
  • 表示"Encoder 的每个词能提供什么线索"
  • 表示"Encoder 的每个词真正的语义内容"
  • 注意力机制决定:Decoder 应该从 Encoder 的哪些词中提取信息

📊 举个具体例子

任务:英译中

  • Source(Encoder 输入):["The", "cat", "sat"]
  • Target(Decoder 输入):["<BOS>", "猫", "坐", "下"]

当 Decoder 生成 "猫" 时:

  1. Encoder 已输出:

  2. Decoder 计算:

    • → 把每个英文词变成"可查询的键"
    • → 把每个英文词变成"可提取的值"
  3. Decoder 的 Query(来自"")与 K 计算相似度:

    • "" 的 Query 与 的 Key 最匹配
    • 所以注意力权重集中在 "cat" 上
  4. 最终输出:从 中加权提取 "cat" 的信息 → 预测出 "猫"


❓ 常见疑问解答

Q1:K 和 V 是 Encoder 的参数还是 Decoder 的参数?

ADecoder 的参数 ,但作用在 Encoder 的输出 上。

它们在训练时和 Decoder 一起更新。

Q2:为什么不能直接用 H 当 K 和 V?

A :可以,但效果差。

通过,模型可以学习如何将 Encoder 表示适配到 Decoder 的查询空间,提升对齐能力。

Q3:每个 Decoder 层都用同一个 H 吗?

A :✅ 是的!

所有 6 个 Decoder 层的 Cross-Attention 都使用 同一个(Encoder 的最终输出)。


✅ 总结流程图

复制代码
Encoder Input → [Encoder] → H (3×512)
                              │
                              ▼
                      K = H · W^K   ← W^K ∈ Decoder 参数
                      V = H · W^V   ← W^V ∈ Decoder 参数
                              │
                              ▼
Decoder Query Q ──→ Cross-Attention(Q, K, V) ──→ 输出
相关推荐
拼命鼠鼠4 小时前
【算法】矩阵链乘法的动态规划算法
算法·矩阵·动态规划
Coding茶水间5 小时前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
baby_hua6 小时前
20251024_PyTorch深度学习快速入门教程
人工智能·pytorch·深度学习
another heaven8 小时前
【深度学习 YOLO官方模型全解析】
人工智能·深度学习·yolo
极度畅想10 小时前
脑电模型实战系列(三):DEAP 数据集处理与 Russell 环状模型实战(一)
深度学习·特征提取·情感计算·脑机接口 bci·deap数据集
CoovallyAIHub12 小时前
从“模仿”到“进化”!华科&小米开源MindDrive:在线强化学习重塑「语言-动作」闭环驾驶
深度学习·算法·计算机视觉
OpenBayes12 小时前
Open-AutoGLM 实现手机端自主操作;PhysDrive 数据集采集真实驾驶生理信号
人工智能·深度学习·机器学习·数据集·文档转换·图片生成·蛋白质设计
CoovallyAIHub12 小时前
SAM 真的开始「分割一切」,从图像到声音,Meta 开源 SAM Audio
深度学习·算法·计算机视觉
五月底_12 小时前
GRPO参数详解
人工智能·深度学习·nlp·rl·grpo