1. 移交线程归属权
std::thread支持移动语义,对于一个具体的执行线程,其归属权可以在几个std::thread实例间转移。如下所示
cpp
void some_function();
void some_other_function();
std::thread t1(some_function);
std::thread t2 = std::move(t1); // move thread ownership
t1 = std::thread(some_other_function); // assign new thread to t1
std::thread t3;
t3 = std::move(t2);
t1 = std::move(t3); // 会终止t1原来执行的线程
其中需要注意的是:
t1 = std::move(t3)操作:在转移之时,t1已经关联运行some_other_function()的线程,因此std::terminate()会被调用,终止整个程序。
也可以从函数内部返回std::thread对象以及把std::thread当做函数参数转移到函数内部,如下所示:
cpp
std::thread f() {
void some_function();
return std::thread(some_function);
}
std::thread g() {
void some_other_function(int);
std::thread t(some_other_function, 42);
return t; // 返回线程对象,触发移动构造函数
}
把线程当做行数参数转移到函数内部
cpp
// 也可以传递线程对象作为参数
void f(std::thread t);
void some_Function();
std::thread t(some_Function);
f(std::move(t)); // 传递线程对象,触发移动构造
可以把线程当做参数,给类的构造使用,即将类封装到class中。如下:
cpp
class scoped_thread {
std::thread t;
public:
explicit scoped_thread(std::thread t_) : t(std::move(t_)) {
if (!t.joinable()) {
throw std::logic_error("No thread");
}
}
~scoped_thread() { t.join(); }
scoped_thread(scoped_thread const&) = delete;
scoped_thread& operator=(scoped_thread const&) = delete;
};
// 使用方式如下
void some_other_function(int);
scoped_thread st(std::thread(some_other_function, 42));
生成多个线程,并且等待它们完成运行
cpp
void do_work(unsigned id);
void f() {
std::vector<std::thread> threads;
for (unsigned i = 0; i < 20; ++i) {
threads.emplace_back(do_work, i);
}
for (auto& entry : threads) {
entry.join();
}
}
2.在运行时选择线程数量
借用c+=标准库的std::thread::hardware_concurrency()函数
需要注意的是,硬件支持的线程数量有限,运行的线程数量不应该超出限度(超出的情况称为线程过饱和),因为线程越多,上下文切换越频繁,导致性能降低。
cpp
// 并行版的std::accumulate()的简单实现
template <typename Iterator, typename T>
struct accumulate_block {
void operator()(Iterator first, Iterator last, T& result) {
result = std::accumulate(first, last, result);
}
};
template <typename Iterator, typename T>
T parallel_accumulate(Iterator first, Iterator last, T init) {
unsigned long const length = std::distance(first, last);
if (!length) return init;
unsigned long const min_per_thread = 25;
unsigned long const max_threads =
(length + min_per_thread - 1) / min_per_thread;
unsigned long const hardware_threads = std::thread::hardware_concurrency();
unsigned long const num_threads =
std::min(hardware_threads != 0 ? hardware_threads : 2, max_threads);
std::vector<T> results(num_threads);
std::vector<std::thread> threads(num_threads - 1);
Iterator block_start = first;
for (unsigned long i = 0; i < (num_threads - 1); ++i) {
Iterator block_end = block_start;
std::advance(block_end, length / num_threads);
threads[i] = std::thread(accumulate_block<Iterator, T>(), block_start,
block_end, std::ref(results[i]));
block_start = block_end;
}
accumulate_block<Iterator, T>()(block_start, last, results[num_threads - 1]);
for (auto& entry : threads) {
entry.join();
}
return std::accumulate(results.begin(), results.end(), init);
}
3.识别线程
线程ID可以通过std::thread::id获取
当前线程I可以通过std::this_thread::get_id()获取
cpp
std::thread::id master_thread;
void some_core_part_of_algorithm() {
if (std::this_thread::get_id() == master_thread) {
do_master_thread_work();
}
do_common_work();
}