CNN全连接层

引言

前序学习进程中,已经梳理了卷积计算池化计算的基本知识。

实际上这两部都是使用卷积核对原始矩阵进行计算或,获得的新的、缩小的矩阵,如何把计算结果一步一步送到最后的输出端,也就是把它们传送、或者说连接起来,这就是全连接层的功能。

全连接层如何计算

全连接层面对的是矩阵数组,如果卷积层或者池化层计算的每一个结果,都是下一层的输入,那第一步就是把这些计算结果"展平",变成一维数组,比如一列,这就是全连接层干的事情。

全连接层展平使用了激活函数,常见的激活函数将卷积层和池化层的数据带入函数运算后,将输出结果直接传递给下一层。

实际上全连接层就是激活函数发挥功能的层,通过激活函数可以引入非线性或者仅保留线性。

代码示例

这里给出一个代码示例,代码使用豆包AI自动生成:

python 复制代码
import numpy as np

# 模拟CNN池化层输出展平后的特征(批量大小=2,单样本特征数=1568)
X = np.random.randn(2, 1568)  # 输入:[2, 1568]

# 定义全连接层参数(对应fc1: 1568→128)
# 生成1568行,128列正态分布随机数
W = np.random.randn(1568, 128)  # 权重:[1568, 128]
# 生成128列正态分布随机数
b = np.random.randn(128)        # 偏置:[128]

# 线性变换计算
output = np.dot(X, W) + b  # 矩阵乘法 + 偏置:[2, 128]

# ReLU激活函数
output_relu = np.maximum(output, 0)  # 负数置0

print("全连接层线性变换输出维度:", output.shape)
print("ReLU激活后输出维度:", output_relu.shape)
print("激活后前5个值:", output_relu[0, :5])

首先会看到生成了一些计算参数:

X:2行1568列正态分布随机数;

W:1568行128列正态分布随机数

b:128列正态分布随机数

然后调用np.dot()函数执行矩阵乘法,获得2行128列数据组成的新矩阵,这个新矩阵的每一列都加上了一个偏置量b,b本身只有128个数,但计算的时候会自动广播,复制一行出来后叠加到np.dot(X,W)上。

然后就是全连接层发生作用的时刻,激活函数np.maximum(output,0)函数只保留非负数,负数强制置0,经过激活函数作用后获得的输出是2行128列。这个结构是预期的,和输入X的结果2行1568列完全不一样。

全连接层的作用,就是把卷积层和池化层的输出再经过激活函数的运算,不仅改变了运算值,还改变了数据结构,使数据按照预设的方式一层一层传递到最后。

总结

学习了全连接层的基础知识。

相关推荐
还不秃顶的计科生2 小时前
如何快速用cmd知道某个文件夹下的子文件以及子文件夹的这个目录分支具体的分支结构
人工智能
九河云2 小时前
不同级别华为云代理商的增值服务内容与质量差异分析
大数据·服务器·人工智能·科技·华为云
Elastic 中国社区官方博客3 小时前
Elasticsearch:Microsoft Azure AI Foundry Agent Service 中用于提供可靠信息和编排的上下文引擎
大数据·人工智能·elasticsearch·microsoft·搜索引擎·全文检索·azure
许泽宇的技术分享3 小时前
当AI学会“说人话“:Azure语音合成技术的魔法世界
后端·python·flask
大模型真好玩3 小时前
Gemini3.0深度解析,它在重新定义智能,会是前端工程师噩梦吗?
人工智能·agent·deepseek
光泽雨3 小时前
python学习基础
开发语言·数据库·python
机器之心3 小时前
AI终于学会「读懂人心」,带飞DeepSeek R1,OpenAI o3等模型
人工智能·openai
AAA修煤气灶刘哥3 小时前
从Coze、Dify到Y-Agent Studio:我的Agent开发体验大升级
人工智能·低代码·agent
裤裤兔3 小时前
python爬取pdf文件并保存至本地
chrome·爬虫·python·pdf·网络爬虫
Solyn_HAN3 小时前
非编码 RNA(ceRNA/lncRNA/circRNA)分析完整流程:从数据下载到功能验证(含代码模板)
python·bash·生物信息学·r