sklearn学习(4)K近邻(KNN)

#K近邻是一种直观和简单的监督学习方法,既可以用在分类任务也可用在回归任务,其主要思想是对于一个新样本计算离它最近的k个样本一般为奇数个,看这k个在哪一类中的数量多,则属于那一类。需要注意的是在进行KNN之前最好对数据进行标准化处理,避免由于量纲导致不利影响。

导入库

复制代码
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report

加载数据

复制代码
iris=load_iris()
x=iris.data
y=iris.target

标准化并划分数据集和测试集

复制代码
#标准化
sc=StandardScaler()
x=sc.fit_transform(x)
#划分训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

创建KNN

复制代码
#创建KNN
knn=KNeighborsClassifier(n_neighbors=3)
#参数解释
#n_neighbors=3,表示根据K个点投票看新类别在哪个类别
#weights=uniform,表示每个邻居的权重相同 还有distance表示距离越近权重越大 默认是uniform
#algorithm=auto,表示计算方式,默认是auto,还有ball_tree kd_tree brute 表示使用的算法
#leaf_size=30,表示叶子节点的个数,默认是30 仅在algorithm=ball_tree和kd_tree时使用
#p=2,表示距离的度量方式,默认是欧氏距离,还有曼哈顿距离
#metric=euclidean,表示距离的度量方式,默认是欧氏距离,还有曼哈顿距离等
#训练
knn.fit(x_train,y_train)#注意这是惰性训练,只会存储数据,不会有模型

测试

复制代码
y_predict=knn.predict(x_test)
print(y_test)
print(y_predict)
print(y_predict==y_test)

计算准确率并输出报告

复制代码
#计算准确率
accuracy=accuracy_score(y_test,y_predict)
print("准确率:",accuracy)
accur=knn.score(x_test,y_test)
print("准确率:",accur)

#分类报告
print(classification_report(y_test,y_predict,target_names=iris.target_names))
相关推荐
雅欣鱼子酱1 小时前
USB Type-C PD取电(诱骗,诱电,SINK),筋膜枪专用取电芯片
网络·人工智能·芯片·电子元器件
kisshuan123967 小时前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits7 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅7 小时前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
qq_356448378 小时前
机器学习基本概念与梯度下降
人工智能
水如烟8 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
气概8 小时前
法奥机器人学习使用
学习·junit·机器人
徐_长卿8 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——8 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
Qhumaing8 小时前
C++学习:【PTA】数据结构 7-1 实验7-1(最小生成树-Prim算法)
c++·学习·算法