sklearn学习(4)K近邻(KNN)

#K近邻是一种直观和简单的监督学习方法,既可以用在分类任务也可用在回归任务,其主要思想是对于一个新样本计算离它最近的k个样本一般为奇数个,看这k个在哪一类中的数量多,则属于那一类。需要注意的是在进行KNN之前最好对数据进行标准化处理,避免由于量纲导致不利影响。

导入库

复制代码
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report

加载数据

复制代码
iris=load_iris()
x=iris.data
y=iris.target

标准化并划分数据集和测试集

复制代码
#标准化
sc=StandardScaler()
x=sc.fit_transform(x)
#划分训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

创建KNN

复制代码
#创建KNN
knn=KNeighborsClassifier(n_neighbors=3)
#参数解释
#n_neighbors=3,表示根据K个点投票看新类别在哪个类别
#weights=uniform,表示每个邻居的权重相同 还有distance表示距离越近权重越大 默认是uniform
#algorithm=auto,表示计算方式,默认是auto,还有ball_tree kd_tree brute 表示使用的算法
#leaf_size=30,表示叶子节点的个数,默认是30 仅在algorithm=ball_tree和kd_tree时使用
#p=2,表示距离的度量方式,默认是欧氏距离,还有曼哈顿距离
#metric=euclidean,表示距离的度量方式,默认是欧氏距离,还有曼哈顿距离等
#训练
knn.fit(x_train,y_train)#注意这是惰性训练,只会存储数据,不会有模型

测试

复制代码
y_predict=knn.predict(x_test)
print(y_test)
print(y_predict)
print(y_predict==y_test)

计算准确率并输出报告

复制代码
#计算准确率
accuracy=accuracy_score(y_test,y_predict)
print("准确率:",accuracy)
accur=knn.score(x_test,y_test)
print("准确率:",accur)

#分类报告
print(classification_report(y_test,y_predict,target_names=iris.target_names))
相关推荐
物联网APP开发从业者几秒前
2026年AI智能软硬件开发领域十大权威认证机构深度剖析
人工智能
MSTcheng.5 分钟前
构建自定义算子库:基于ops-nn和aclnn两阶段模式的创新指南
人工智能·cann
User_芊芊君子8 分钟前
CANN图编译器GE全面解析:构建高效异构计算图的核心引擎
人工智能·深度学习·神经网络
lili-felicity8 分钟前
CANN加速Whisper语音识别推理:流式处理与实时转录优化
人工智能·whisper·语音识别
沈浩(种子思维作者)9 分钟前
系统要活起来就必须开放包容去中心化
人工智能·python·flask·量子计算
行走的小派11 分钟前
引爆AI智能体时代!OPi 6Plus全面适配OpenClaw
人工智能
云边有个稻草人12 分钟前
CANN:解构AIGC底层算力,ops-nn驱动神经网络算子加速
人工智能·神经网络·aigc·cann
爱吃大芒果12 分钟前
CANN神经网络算子库设计思路:ops-nn项目的工程化实现逻辑
人工智能·深度学习·神经网络
人工智能培训22 分钟前
具身智能如何让智能体理解物理定律?
人工智能·多模态学习·具身智能·ai培训·人工智能工程师·物理定律
lili-felicity23 分钟前
CANN加速Stable Diffusion文生图推理:从UNet优化到内存复用
人工智能·aigc