sklearn学习(4)K近邻(KNN)

#K近邻是一种直观和简单的监督学习方法,既可以用在分类任务也可用在回归任务,其主要思想是对于一个新样本计算离它最近的k个样本一般为奇数个,看这k个在哪一类中的数量多,则属于那一类。需要注意的是在进行KNN之前最好对数据进行标准化处理,避免由于量纲导致不利影响。

导入库

复制代码
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report

加载数据

复制代码
iris=load_iris()
x=iris.data
y=iris.target

标准化并划分数据集和测试集

复制代码
#标准化
sc=StandardScaler()
x=sc.fit_transform(x)
#划分训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

创建KNN

复制代码
#创建KNN
knn=KNeighborsClassifier(n_neighbors=3)
#参数解释
#n_neighbors=3,表示根据K个点投票看新类别在哪个类别
#weights=uniform,表示每个邻居的权重相同 还有distance表示距离越近权重越大 默认是uniform
#algorithm=auto,表示计算方式,默认是auto,还有ball_tree kd_tree brute 表示使用的算法
#leaf_size=30,表示叶子节点的个数,默认是30 仅在algorithm=ball_tree和kd_tree时使用
#p=2,表示距离的度量方式,默认是欧氏距离,还有曼哈顿距离
#metric=euclidean,表示距离的度量方式,默认是欧氏距离,还有曼哈顿距离等
#训练
knn.fit(x_train,y_train)#注意这是惰性训练,只会存储数据,不会有模型

测试

复制代码
y_predict=knn.predict(x_test)
print(y_test)
print(y_predict)
print(y_predict==y_test)

计算准确率并输出报告

复制代码
#计算准确率
accuracy=accuracy_score(y_test,y_predict)
print("准确率:",accuracy)
accur=knn.score(x_test,y_test)
print("准确率:",accur)

#分类报告
print(classification_report(y_test,y_predict,target_names=iris.target_names))
相关推荐
wdfk_prog2 分钟前
[Linux]学习笔记系列 -- [drivers][dma]stm32-dma
linux·笔记·学习
暖阳之下4 分钟前
学习周报三十三
学习
说私域9 分钟前
社群招募文案的核心构建要点与工具赋能路径——基于AI智能名片链动2+1模式商城小程序的实践研究
人工智能·小程序·私域运营
LaughingZhu10 分钟前
Product Hunt 每日热榜 | 2026-01-31
大数据·人工智能·经验分享·搜索引擎·产品运营
写点什么呢12 分钟前
Ltspice_安装与使用
学习·测试工具
下午写HelloWorld13 分钟前
一维卷积神经网络 (1D CNN)
人工智能·神经网络·cnn
Sagittarius_A*14 分钟前
形态学与多尺度处理:计算机视觉中图像形状与尺度的基础处理框架【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉
CappuccinoRose16 分钟前
CSS前端布局总指南
前端·css·学习·布局·flex布局·grid布局·float布局
mango_mangojuice20 分钟前
Linux学习笔记(角色,权限管理)1.21
linux·笔记·学习
小润nature22 分钟前
Moltbot/OpenClaw Gateway 命令和交互
人工智能