sklearn学习(4)K近邻(KNN)

#K近邻是一种直观和简单的监督学习方法,既可以用在分类任务也可用在回归任务,其主要思想是对于一个新样本计算离它最近的k个样本一般为奇数个,看这k个在哪一类中的数量多,则属于那一类。需要注意的是在进行KNN之前最好对数据进行标准化处理,避免由于量纲导致不利影响。

导入库

复制代码
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report

加载数据

复制代码
iris=load_iris()
x=iris.data
y=iris.target

标准化并划分数据集和测试集

复制代码
#标准化
sc=StandardScaler()
x=sc.fit_transform(x)
#划分训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

创建KNN

复制代码
#创建KNN
knn=KNeighborsClassifier(n_neighbors=3)
#参数解释
#n_neighbors=3,表示根据K个点投票看新类别在哪个类别
#weights=uniform,表示每个邻居的权重相同 还有distance表示距离越近权重越大 默认是uniform
#algorithm=auto,表示计算方式,默认是auto,还有ball_tree kd_tree brute 表示使用的算法
#leaf_size=30,表示叶子节点的个数,默认是30 仅在algorithm=ball_tree和kd_tree时使用
#p=2,表示距离的度量方式,默认是欧氏距离,还有曼哈顿距离
#metric=euclidean,表示距离的度量方式,默认是欧氏距离,还有曼哈顿距离等
#训练
knn.fit(x_train,y_train)#注意这是惰性训练,只会存储数据,不会有模型

测试

复制代码
y_predict=knn.predict(x_test)
print(y_test)
print(y_predict)
print(y_predict==y_test)

计算准确率并输出报告

复制代码
#计算准确率
accuracy=accuracy_score(y_test,y_predict)
print("准确率:",accuracy)
accur=knn.score(x_test,y_test)
print("准确率:",accur)

#分类报告
print(classification_report(y_test,y_predict,target_names=iris.target_names))
相关推荐
沫儿笙1 小时前
kuka库卡弧焊接机器人保护气节气装置
人工智能·物联网·机器人
路边草随风1 小时前
flink实现变更算子checkpoint断点续传依然生效
大数据·人工智能·flink
西猫雷婶1 小时前
CNN卷积计算|多维卷积核自动计算
人工智能·pytorch·深度学习·神经网络·机器学习·cnn
skywalk81631 小时前
用Trae的sole模式来模拟文心快码comate的Spec Mode模式来做一个esp32操作系统的项目2
人工智能·trae·esp32c3·solo
Lyre丶1 小时前
ginan入门初探
linux·经验分享·学习·ubuntu
夫唯不争,故无尤也1 小时前
Transformer 原理系列(第一章)—— 从序列相关性出发,理解注意力机制的本质
人工智能·深度学习·transformer
美狐美颜SDK开放平台1 小时前
直播平台美颜SDK开发全流程:UI、算法、渲染到产品化的落地
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk
weixin_505154461 小时前
在浏览器实现3D效果,有最优雅的解决方案吗?
人工智能·3d·数字孪生·3d产品配置器·3d交互展示·3d数字资产