点集配准---迭代最近点算法ICP(Iterative Closest Point)

迭代最近点算法ICP(Iterative Closest Point)

一、算法流程:

在带匹配的目标点云P和源点云Q中,按照欧氏距离,找到对应的最邻近点pi∈目标点云P,qi∈目标点云Q。然后计算出最优匹配参数R和t,使得误差函数最小。误差函数为E(R,t)为:

https://www.bilibili.com/video/BV1ri421Z7i7/?spm_id_from=333.337.search-card.all.click\&vd_source=fa2de999698ac3d60b845e474ef6d191

二、公式推导:

步骤 1:计算点云质心,消除平移干扰

将两个点集都以质心点为坐标原点。

步骤 2:代入误差函数,分离旋转与平移

注意上图中第二项中仅与平移相关只是在第一项中确定R的情况下的得到的。是先固定旋转矩阵R,再单独分析平移t的最优解,所以在这个阶段,R被视为已知的 "常数",因此第二项只随t变化。 具体解释如下:

步骤 3:求解最优旋转矩阵R

现在需要求旋转矩阵R和平移矩阵T

将其带入目标函数E(R)得到关于θ的函数

对θ求导,当θ等于0时有极大值。

可以求出θ为如下表达式,ai,bi就是点集P和点集Q中的所有点,所以可以求出旋转矩阵的角度θ。

步骤 4:确定平移矩阵t*

由于在步骤二中已经得到平移矩阵的表达式,将求得的旋转矩阵R以及点云质心带入即可。

带入后公式为:Amean和Bmean就是点云质心

https://blog.csdn.net/qq_32618327/article/details/113997681

https://www.doubao.com/chat/32180146044744450

三、优化思路:

1.通过欧氏距离找到的两个点云之间距离最近的点对,实际情况中不一定是真实对应的,这种情况就会拉高计算出的点云之间的距离。可以通过赋予不同的权重来优化。

相关推荐
wxm6311 分钟前
力扣算法题(C++):1、2
java·算法·leetcode
im_AMBER7 分钟前
Leetcode 103 反转链表 II
数据结构·c++·笔记·学习·算法·leetcode
rgeshfgreh11 分钟前
回溯算法精解:排列、子集与组合
python·算法·深度优先
rit843249932 分钟前
有限元算法求解铁木辛柯梁梁静力问题实例
算法
智驱力人工智能34 分钟前
矿山皮带锚杆等异物识别 从事故预防到智慧矿山的工程实践 锚杆检测 矿山皮带铁丝异物AI预警系统 工厂皮带木桩异物实时预警技术
人工智能·算法·安全·yolo·目标检测·计算机视觉·边缘计算
忆锦紫38 分钟前
图像降噪算法:中值滤波算法及MATLAB实现
图像处理·算法·matlab
知乎的哥廷根数学学派39 分钟前
基于多分辨率注意力脉冲神经网络的机械振动信号故障诊断算法(西储大学轴承数据,Pytorch)
人工智能·pytorch·深度学习·神经网络·算法·机器学习
kebijuelun1 小时前
Qwen 团队提出 ArenaRL:面向开放式 Agent RL 任务
人工智能·算法·语言模型·transformer
机器学习之心1 小时前
PSO优化的K-means++聚类算法用于用户用电行为分析的实现方案
算法·kmeans·聚类
小黄鸭code1 小时前
C++ 算法笔试题(常见算法版)
c++·算法·排序算法