(八)自然语言处理笔记——基于Neo4j的医疗问答系统

((八)自然语言处理笔记------基于Neo4j的医疗问答系统

使用py2neo链接Neo4j数据库

python 复制代码
pip install py2neo --default-timeout=100 -i https://pypi.tuna.tsinghua.edu.cn/simple

测试能否正常连接:

python 复制代码
from py2neo import Graph

graph = Graph(
    "bolt://192.168.8.216:7687",
    auth=("neo4j", "googosoft")
)

result = graph.run("CALL dbms.components() YIELD name, versions RETURN name, versions").data()
print(result)



reset_cypher = """
MATCH (n)
DETACH DELETE n
"""


graph.run(reset_cypher)

print("数据库已清空!")

创建节点与关系用法

python 复制代码
from py2neo import Node, Graph, Relationship,NodeMatcher


class DataToNeo4j(object):
    """将excel中数据存入neo4j"""

    def __init__(self):
        """建立连接"""
        link = Graph(
            "bolt://192.168.8.216:7687",
            auth=("neo4j", "googosoft")
        )
    
        self.graph = link
        #self.graph = NodeMatcher(link)
        # 定义label
        self.buy = 'buy'
        self.sell = 'sell'
        self.graph.delete_all()    # 清空数据库中所有数据
        self.matcher = NodeMatcher(link)
        
        """
        node3 = Node('animal' , name = 'cat')
        node4 = Node('animal' , name = 'dog')  
        node2 = Node('Person' , name = 'Alice')
        node1 = Node('Person' , name = 'Bob')  
        r1 = Relationship(node2 , 'know' , node1)    
        r2 = Relationship(node1 , 'know' , node3) 
        r3 = Relationship(node2 , 'has' , node3) 
        r4 = Relationship(node4 , 'has' , node2)    
        self.graph.create(node1)
        self.graph.create(node2)
        self.graph.create(node3)
        self.graph.create(node4)
        self.graph.create(r1)
        self.graph.create(r2)
        self.graph.create(r3)
        self.graph.create(r4)
        """

详细用法类:

python 复制代码
# -*- coding: utf-8 -*-
from py2neo import Node, Graph, Relationship,NodeMatcher


class DataToNeo4j(object):
    """将excel中数据存入neo4j"""

    def __init__(self):
        """建立连接"""
        link = Graph(
            "bolt://192.168.8.216:7687",
            auth=("neo4j", "googosoft")
        )
    
        self.graph = link
        #self.graph = NodeMatcher(link)
        # 定义label
        self.buy = 'buy'
        self.sell = 'sell'
        self.graph.delete_all()    # 清空数据库中所有数据
        self.matcher = NodeMatcher(link)
        
        """
        node3 = Node('animal' , name = 'cat')
        node4 = Node('animal' , name = 'dog')  
        node2 = Node('Person' , name = 'Alice')
        node1 = Node('Person' , name = 'Bob')  
        r1 = Relationship(node2 , 'know' , node1)    
        r2 = Relationship(node1 , 'know' , node3) 
        r3 = Relationship(node2 , 'has' , node3) 
        r4 = Relationship(node4 , 'has' , node2)    
        self.graph.create(node1)
        self.graph.create(node2)
        self.graph.create(node3)
        self.graph.create(node4)
        self.graph.create(r1)
        self.graph.create(r2)
        self.graph.create(r3)
        self.graph.create(r4)
        """


    def create_node(self, node_buy_key,node_sell_key):
        """建立节点"""
        for name in node_buy_key:
            buy_node = Node(self.buy, name=name)
            self.graph.create(buy_node)
        for name in node_sell_key:
            sell_node = Node(self.sell, name=name)
            self.graph.create(sell_node)
            
        

    def create_relation(self, df_data):
        """建立联系"""      
        m = 0
        for m in range(0, len(df_data)):
            try:    
                print(list(self.matcher.match(self.buy).where("_.name=" + "'" + df_data['buy'][m] + "'")))
                print(list(self.matcher.match(self.sell).where("_.name=" + "'" + df_data['sell'][m] + "'")))
                rel = Relationship(self.matcher.match(self.buy).where("_.name=" + "'" + df_data['buy'][m] + "'").first(),
                                   df_data['money'][m], self.matcher.match(self.sell).where("_.name=" + "'" + df_data['sell'][m] + "'").first())

                self.graph.create(rel)
            except AttributeError as e:
                print(e, m)
            

将数据写入到Neo4j数据库中Demo

数据格式:

python 复制代码
# -*- coding: utf-8 -*-
from py2neo import Node, Graph, Relationship,NodeMatcher


class DataToNeo4j(object):
    """将excel中数据存入neo4j"""

    def __init__(self):
        """建立连接"""
        link = Graph(
            "bolt://192.168.8.216:7687",
            auth=("neo4j", "googosoft")
        )
    
        self.graph = link
        #self.graph = NodeMatcher(link)
        # 定义label
        self.buy = 'buy'
        self.sell = 'sell'
        self.graph.delete_all()    # 清空数据库中所有数据
        self.matcher = NodeMatcher(link)
        
        """
        node3 = Node('animal' , name = 'cat')
        node4 = Node('animal' , name = 'dog')  
        node2 = Node('Person' , name = 'Alice')
        node1 = Node('Person' , name = 'Bob')  
        r1 = Relationship(node2 , 'know' , node1)    
        r2 = Relationship(node1 , 'know' , node3) 
        r3 = Relationship(node2 , 'has' , node3) 
        r4 = Relationship(node4 , 'has' , node2)    
        self.graph.create(node1)
        self.graph.create(node2)
        self.graph.create(node3)
        self.graph.create(node4)
        self.graph.create(r1)
        self.graph.create(r2)
        self.graph.create(r3)
        self.graph.create(r4)
        """


    def create_node(self, node_buy_key,node_sell_key):
        """建立节点"""
        for name in node_buy_key:
            buy_node = Node(self.buy, name=name)
            self.graph.create(buy_node)
        for name in node_sell_key:
            sell_node = Node(self.sell, name=name)
            self.graph.create(sell_node)
            
        

    def create_relation(self, df_data):
        """建立联系"""      
        m = 0
        for m in range(0, len(df_data)):
            try:    
                print(list(self.matcher.match(self.buy).where("_.name=" + "'" + df_data['buy'][m] + "'")))
                print(list(self.matcher.match(self.sell).where("_.name=" + "'" + df_data['sell'][m] + "'")))
                rel = Relationship(self.matcher.match(self.buy).where("_.name=" + "'" + df_data['buy'][m] + "'").first(),
                                   df_data['money'][m], self.matcher.match(self.sell).where("_.name=" + "'" + df_data['sell'][m] + "'").first())

                self.graph.create(rel)
            except AttributeError as e:
                print(e, m)
            

"""
Relationship(start_node, rel_type, end_node) 用法:
start_node:关系起点节点对象
rel_type:关系类型(通常是字符串,比如 'SELL_TO')
end_node:关系终点节点对象
"""
python 复制代码
# -*- coding: utf-8 -*-
from dataToNeo4jClass.DataToNeo4jClass import DataToNeo4j
import os
import pandas as pd
#pip install py2neo==5.0b1 注意版本,要不对应不了

invoice_data = pd.read_excel('/home/data/project/customer_AAA/NLP/Heima/018_Neo4j_pandasDemo/Invoice_data_Demo.xls', header=0)
#print(invoice_data)

#可以先阅读下文档:https://py2neo.org/v4/index.html

def data_extraction():
    """节点数据抽取"""

    # 取出购买方名称到list
    node_buy_key = []
    for i in range(0, len(invoice_data)):
        node_buy_key.append(invoice_data['购买方名称'][i])
    
    node_sell_key = []
    for i in range(0, len(invoice_data)):
        node_sell_key.append(invoice_data['销售方名称'][i])
        
    # 去除重复的发票名称
    node_buy_key = list(set(node_buy_key))
    node_sell_key = list(set(node_sell_key))

    # value抽出作node
    node_list_value = []
    for i in range(0, len(invoice_data)):
        for n in range(1, len(invoice_data.columns)):
            # 取出表头名称invoice_data.columns[i]
            node_list_value.append(invoice_data[invoice_data.columns[n]][i])
    # 去重
    node_list_value = list(set(node_list_value))
    # 将list中浮点及整数类型全部转成string类型
    node_list_value = [str(i) for i in node_list_value]

    return node_buy_key, node_sell_key,node_list_value


def relation_extraction():
    """联系数据抽取"""

    links_dict = {}
    sell_list = []
    money_list = []
    buy_list = []

    for i in range(0, len(invoice_data)):

        money_list.append(invoice_data['金额'][i])       #金额
        sell_list.append(invoice_data['销售方名称'][i])  #销售方方名称
        buy_list.append(invoice_data['购买方名称'][i])   #购买方名称 



    # 将数据中int类型全部转成string
    sell_list = [str(i) for i in sell_list]
    buy_list = [str(i) for i in buy_list]
    money_list = [str(i) for i in money_list]

    # 整合数据,将三个list整合成一个dict
    links_dict['buy'] = buy_list
    links_dict['money'] = money_list
    links_dict['sell'] = sell_list
    # 将数据转成DataFrame
    df_data = pd.DataFrame(links_dict)
    print(df_data)
    return df_data

relation_extraction()   # 提取关系
create_data = DataToNeo4j()   # 初始化Neo4j数据库

create_data.create_node(data_extraction()[0], data_extraction()[1])   # 图数据库创建节点的语句
create_data.create_relation(relation_extraction())                    # 图数据库创建关系的语句

写入后。结果如下:

代码下载:

python 复制代码
https://download.csdn.net/download/guoqingru0311/92443705
相关推荐
xiao5kou4chang6kai46 小时前
只是把AI当作一个更聪明的搜索工具??如何用大语言模型高效整合信息并把研究想法快速转化为可发表成果
人工智能·自然语言处理·llm·大语言模型·n8n自动化
Allen_LVyingbo7 小时前
用Python实现辅助病案首页主诊断编码:从数据清洗到模型上线(上)
开发语言·python·github·知识图谱·健康医疗
Allen_LVyingbo7 小时前
用Python实现辅助病案首页主诊断编码:从数据清洗到模型上线(下)
开发语言·python·安全·搜索引擎·知识图谱·健康医疗
lxs-7 小时前
探索自然语言处理(NLP)的旅程:从分词到文本生成
人工智能·自然语言处理
大模型任我行7 小时前
腾讯:RAG生成器感知的排序模型
人工智能·语言模型·自然语言处理·论文笔记
CCPC不拿奖不改名21 小时前
两种完整的 Git 分支协作流程
大数据·人工智能·git·python·elasticsearch·搜索引擎·自然语言处理
狮子座明仔1 天前
MatchTIR:用二分匹配解决LLM工具调用的“吃大锅饭“难题
人工智能·深度学习·语言模型·自然语言处理
imbackneverdie1 天前
如何通过读文献寻找科研思路?
人工智能·ai·自然语言处理·aigc·ai写作·ai读文献
AI工具测评大师1 天前
如何有效降低英文文本的Turnitin AI检测率?安全指南与工具推荐
人工智能·深度学习·自然语言处理·文心一言·ai写作·ai自动写作
机器学习社区1 天前
《大模型面试宝典》(2026版) 正式发布!
人工智能·语言模型·自然语言处理·面试·职场和发展·面试题