CNN和RNN结合提升分类效果

首先利用3D CNN 对MRI进行分类操作

数据 :AD:73例 CN:102例 MRI-T1像

T1像便于显示解剖结构(T2像擅长显示病灶)

预处理:去除脑外(参数0.3)

网络结构: 共10层,包含

4个卷积层

4个池化层

2个全连接层

分类结果 :

CNN AUC : 0.8605542452830188

CNN ACC : 0.8613861386138614

CNN Recall : 0.8773584905660378

CNN Precesion : 0.8611111111111112

CNN F1-score: 0.869158878504673

AUC:ROC曲线下的面积

ACC:分类精度

Recall:查全率(召回率)--在所有真正的病例中,有多少被检测出来

Precesion:查准率--检测出患病的病例中,有多少是真正的病例

查全率和查准率一般不能同时兼顾,一个高了另一个就会低

F1-score:F1分数 查全率与查准率的调和平均数,可以作为一个最终的评价指标


ROC曲线:

验证方法 :

10折交叉验证

(取10个结构相同的模型,各自单独训练,得到相互独立的10个分类结果,再将10个结果平均起来作为最终的分类结果)

即:模型一样,每次用来训练的数据不一样

作用:评价分类器的性能,保证模型对数据集中的各部分的数据都是有效的


接下来处理fMRI中的时间序列信息

利用LSTM(一种RNN的变体)

RNN的作用是可以在当前的任务上利用到先前的信息,适合用来处理时间序列

RNN的缺点是只能记住与某时刻时间点位置相邻的信息,而更早的信息会很快"忘记"

为了解决这个问题,人们提出了"LSTM"(Long and Short Term Memory),它的优点是增加了记忆单元,

能够记住更早时刻的信息.

做法:将RNN和1D卷积结合起来用于处理从fMRI中提取出来的时间序列。

数据 :fMRI 数据 AD:73例 CN:102例 (resting-state-fMRI)
提取RO I:

使用与AD相关的脑区的时间序列

将额叶,顶叶,颞叶,扣带回和海马的序列保留

(AD病人的fMRI代谢发生改变,相关脑区代谢降低,保留这部分脑区的时间序列,小脑和枕叶代谢代偿性增高,不保留)

把每个时间点上包含的特征用CNN提取出来,然后利用LSTM整合各个时间点提取到的特征,最后融合所有特征得到一个输出.

整个网络是一个"多对一"的结构,输入各个时间点上的特征信息,输出分类结果

整体目标:将CNN与RNN结合起来,同时利用MRI和fMRI的数据以实现提高分类精度的目的

相关推荐
byzh_rc7 分钟前
[模式识别-从入门到入土] 专栏总结
人工智能·机器学习
yesyesyoucan9 分钟前
标题:AI图片背景去除全能站:从复杂场景到透明底图的智能解构方案
人工智能
ai_xiaogui12 分钟前
Panelai 深度解析:新一代 AI 服务器管理面板,如何实现闲置算力变现与多租户商业化部署?
人工智能·零基础部署 comfyui·多租户 ai 计费面板·gpu 算力租赁平台搭建·私有化 ai 部署商业方案
LINGYI00024 分钟前
什么是品牌全案?新品牌如何制定品牌规划?
人工智能·天猫代运营·品牌全案
AGI_Eval26 分钟前
AGI-Eval 2025年度报告精选 | 以数据为尺,度量智能边界
人工智能
策知道29 分钟前
从“抗旱保苗”到“修渠引水”:读懂五年财政政策的变奏曲
大数据·数据库·人工智能·搜索引擎·政务
洞见新研社36 分钟前
从实验室走向真实世界,2025年具身智能的产业突破与挑战
人工智能
XC1314890826741 分钟前
法律行业获客,如何用科技手段突破案源瓶颈的实操方法
大数据·人工智能·科技
Dev7z44 分钟前
轨道交通车站客流YOLO格式检测数据集
人工智能·yolo
haiyu_y1 小时前
Day 53 对抗生成网络 (GAN) 实战
人工智能·深度学习·生成对抗网络