CNN和RNN结合提升分类效果

首先利用3D CNN 对MRI进行分类操作

数据 :AD:73例 CN:102例 MRI-T1像

T1像便于显示解剖结构(T2像擅长显示病灶)

预处理:去除脑外(参数0.3)

网络结构: 共10层,包含

4个卷积层

4个池化层

2个全连接层

分类结果 :

CNN AUC : 0.8605542452830188

CNN ACC : 0.8613861386138614

CNN Recall : 0.8773584905660378

CNN Precesion : 0.8611111111111112

CNN F1-score: 0.869158878504673

AUC:ROC曲线下的面积

ACC:分类精度

Recall:查全率(召回率)--在所有真正的病例中,有多少被检测出来

Precesion:查准率--检测出患病的病例中,有多少是真正的病例

查全率和查准率一般不能同时兼顾,一个高了另一个就会低

F1-score:F1分数 查全率与查准率的调和平均数,可以作为一个最终的评价指标


ROC曲线:

验证方法 :

10折交叉验证

(取10个结构相同的模型,各自单独训练,得到相互独立的10个分类结果,再将10个结果平均起来作为最终的分类结果)

即:模型一样,每次用来训练的数据不一样

作用:评价分类器的性能,保证模型对数据集中的各部分的数据都是有效的


接下来处理fMRI中的时间序列信息

利用LSTM(一种RNN的变体)

RNN的作用是可以在当前的任务上利用到先前的信息,适合用来处理时间序列

RNN的缺点是只能记住与某时刻时间点位置相邻的信息,而更早的信息会很快"忘记"

为了解决这个问题,人们提出了"LSTM"(Long and Short Term Memory),它的优点是增加了记忆单元,

能够记住更早时刻的信息.

做法:将RNN和1D卷积结合起来用于处理从fMRI中提取出来的时间序列。

数据 :fMRI 数据 AD:73例 CN:102例 (resting-state-fMRI)
提取RO I:

使用与AD相关的脑区的时间序列

将额叶,顶叶,颞叶,扣带回和海马的序列保留

(AD病人的fMRI代谢发生改变,相关脑区代谢降低,保留这部分脑区的时间序列,小脑和枕叶代谢代偿性增高,不保留)

把每个时间点上包含的特征用CNN提取出来,然后利用LSTM整合各个时间点提取到的特征,最后融合所有特征得到一个输出.

整个网络是一个"多对一"的结构,输入各个时间点上的特征信息,输出分类结果

整体目标:将CNN与RNN结合起来,同时利用MRI和fMRI的数据以实现提高分类精度的目的

相关推荐
心态与习惯8 小时前
深度学习中的 seq2seq 模型
人工智能·深度学习·seq2seq
Coder_Boy_8 小时前
基于SpringAI的在线考试系统-0到1全流程研发:DDD、TDD与CICD协同实践
java·人工智能·spring boot·架构·ddd·tdd
北京耐用通信9 小时前
耐达讯自动化Profibus总线光纤中继器:光伏逆变器通讯的“稳定纽带”
人工智能·物联网·网络协议·自动化·信息与通信
啊阿狸不会拉杆9 小时前
《数字图像处理》第 7 章 - 小波与多分辨率处理
图像处理·人工智能·算法·计算机视觉·数字图像处理
AI即插即用9 小时前
即插即用系列 | CVPR 2025 AmbiSSL:首个注释模糊感知的半监督医学图像分割框架
图像处理·人工智能·深度学习·计算机视觉·视觉检测
数说星榆1819 小时前
脑启发计算与类神经形态芯片的协同
人工智能
m0_650108249 小时前
AD-GS:面向自监督自动驾驶场景的目标感知 B 样条高斯 splatting 技术
论文阅读·人工智能·自动驾驶·基于高斯泼溅的自监督框架·高质量场景渲染
王锋(oxwangfeng)9 小时前
自动驾驶领域OCC标注
人工智能·机器学习·自动驾驶
cxr8289 小时前
从NP-hard到梯度下降:神经-符号架构如何破解因果发现的“计算魔咒”
人工智能·重构·认知框架
老陈聊架构9 小时前
『AI辅助Skill』掌握三大AI设计Skill:前端独立完成产品设计全流程
前端·人工智能·claude·skill