给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足:
0 <= i, j, k, l < nnums1[i] + nums2[j] + nums3[k] + nums4[l] == 0
示例 1:
输入:nums1 = [1,2], nums2 = [-2,-1], nums3 = [-1,2], nums4 = [0,2]
输出:2
解释:
两个元组如下:
1. (0, 0, 0, 1) -> nums1[0] + nums2[0] + nums3[0] + nums4[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> nums1[1] + nums2[1] + nums3[0] + nums4[0] = 2 + (-1) + (-1) + 0 = 0
思路
用哈希表记录 nums1+nums2 的所有两数之和出现次数,再遍历 nums3+nums4 查找是否存在能与之凑成 0 的相反数,从而快速统计四数和为 0 的组合数量。
python
from collections import defaultdict
from typing import List
class Solution:
def fourSumCount(self, nums1: List[int], nums2: List[int], nums3: List[int], nums4: List[int]) -> int:
d=defaultdict(int)
res=0
for n1 in nums1:
for n2 in nums2:
d[n1+n2]+=1
for n3 in nums3:
for n4 in nums4:
res+=d[-(n3+n4)]
return res