RAW-Adapter: Adapting Pre-trained Visual Model to Camera RAW Images

Cui Z, Harada T. RAW-adapter: Adapting pre-trained visual model to camera RAW images[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 37-56.


Background

  • RAW images:
  • directly acquired by the camera sensor--encompasses abundant information.
  • sRGB images:
  • derived from RAW data through image signal processor (ISP)--ease of acquisition and efficient storage.

Existing methods

  • Fig. 1(a) ISP process
  • Fig. 1(b) manually designed ISP--based on visual experience
  • Fig. 1(c) optimize ISP jointly with downstream networks
  • Fig. 1(d) RAW-Adapter

Introduction


Method

  • RAW-Adapter--adapting sRGB pre-trained models to camera RAW images
  • input-level adapters: query adaptive learning (QAL) and implicit neural representations (INR) optimize ISP key parameters
  • model-level adapters: prior input stage information enriches model understanding

Method--input-level adapters

  • Gain & Denoise
  • White Balance & CCM Matrix
  • Color Manipulation Process

Method--model-level adapters

  • employ the prior information from ISP process as model-level adapters to guide subsequent models' perception

Evaluation

  • datasets: PASCAL RAW [1] and LOD [2]

1\] Omid-Zohoor A, Ta D, Murmann B. PASCALRAW: raw image database for object detection\[J\]. Stanford Digital Repository, 2014, 2(3): 4. \[2\] Hong Y, Wei K, Chen L, et al. Crafting Object Detection in Very Low Light\[C\]//BMVC. 2021, 1(2): 3. ![](https://i-blog.csdnimg.cn/direct/fb5a8ca734c84443b931c6660e12c1a7.png) ![](https://i-blog.csdnimg.cn/direct/e54b0bb5da5a4859a00eec2073d808d1.png) ![](https://i-blog.csdnimg.cn/direct/c5bc7ef52a004deaa50f2167e0c9c05a.png) ![](https://i-blog.csdnimg.cn/direct/ed15da06cd824f09b5b4213ca3f54fab.png) ![](https://i-blog.csdnimg.cn/direct/2ee120fa710742a1a5b218bb38a4d1e6.png) *** ** * ** ***

相关推荐
摘星编程21 小时前
深入理解CANN ops-nn BatchNormalization算子:训练加速的关键技术
python
魔芋红茶21 小时前
Python 项目版本控制
开发语言·python
lili-felicity1 天前
CANN批处理优化技巧:从动态批处理到流水线并行
人工智能·python
一个有梦有戏的人1 天前
Python3基础:进阶基础,筑牢编程底层能力
后端·python
摘星编程1 天前
解析CANN ops-nn中的Transpose算子:张量维度变换的高效实现
python
Liekkas Kono1 天前
RapidOCR Python 贡献指南
开发语言·python·rapidocr
玄同7651 天前
Python 后端三剑客:FastAPI/Flask/Django 对比与 LLM 开发选型指南
人工智能·python·机器学习·自然语言处理·django·flask·fastapi
爱吃泡芙的小白白1 天前
环境数据多维关系探索利器:Pairs Plot 完全指南
python·信息可视化·数据分析·环境领域·pairs plot
派葛穆1 天前
Python-批量安装依赖
开发语言·python