RAG简介

  1. 概述
    RAG(Retrieval Augmented Generation)检索增强生成技术,解决了LLM(Large Language Model)的知识局限性、in-context learning(上下文学习)的token限制、重新进行模型微调成本高以及数据安全考虑等痛点,以已有知识库作为背景知识,让AI模型从基于记忆和理解进行答案编造考试,转换成基于垂直领域知识库的开卷考试。
  2. 架构
    分为在线和离线两部分。
    • 离线
      离线部分主要是实现知识库的向量化存储和索引构建。大致包含了文档解析、拆分、入库以及构建索引等步骤。
    • 在线
      在线部分主要是实现Query的意图识别和结果生成。大致包含了Query的解析、基于相似度的查询匹配、构造prompt以及通过LLM输出结果等步骤。
  1. 为什么用向量数据库
    一方面查询场景不能简单通过文本的精确匹配 来得到结果,而是通过语义匹配 来得到结果。向量Embedding能充分包含语义信息;
    另一方面向量数据库在向量的存储和查询上有特有的优势。
  2. 文档解析拆分
    文档解析拆分包含了数据清洗、文本/图片/表格的识别、数据分段等过程。目前已有对应的机器学习和深度学习模型,如RagFlow。
  3. Query解析
    由于用户提问往往具有模糊性和复杂性,需要对问题进行改写、增强、分解
  4. 查询路由
    理解用户query后,在查询路由步骤,通过定义查询路由器以及各个查询数据插件,将用户查询情况传给LLM,通过LLM决策,决定接下来要调用哪个查询插件,然后调用执行路由选择的插件,最后将各个插件预定义格式返回的结果汇总
相关推荐
爱喝白开水a9 小时前
前端AI自动化测试:brower-use调研让大模型帮你做网页交互与测试
前端·人工智能·大模型·prompt·交互·agent·rag
落霞的思绪9 小时前
GIS大模型RAG知识库
agent·rag
梵得儿SHI14 小时前
(第十篇)Spring AI 核心技术攻坚全梳理:企业级能力矩阵 + 四大技术栈攻坚 + 性能优化 Checklist + 实战项目预告
java·人工智能·spring·rag·企业级ai应用·springai技术体系·多模态和安全防护
Java后端的Ai之路14 小时前
【RAG技术】- RAG系统调优手段之GraphRAG(全局视野)
人工智能·知识库·调优·rag·graphrag
王建文go1 天前
RAG(宠物健康AI)
人工智能·宠物·rag
玄同7651 天前
LangChain 1.0 模型接口:多厂商集成与统一调用
开发语言·人工智能·python·langchain·知识图谱·rag·智能体
落霞的思绪1 天前
Spring AI Alibaba 集成 Redis 向量数据库实现 RAG 与记忆功能
java·spring·rag·springai
玄同7652 天前
LangChain 1.0 框架全面解析:从架构到实践
人工智能·深度学习·自然语言处理·中间件·架构·langchain·rag
Java后端的Ai之路2 天前
【RAG技术】- RAG系统调优手段之高效召回(通俗易懂附案例)
人工智能·rag·rag系统·召回·rag调优
千桐科技2 天前
qKnow 知识平台核心能力解析|第 03 期:结构化抽取能力全流程介绍
大模型·llm·知识图谱·知识库·rag·qknow·知识平台