RAG简介

  1. 概述
    RAG(Retrieval Augmented Generation)检索增强生成技术,解决了LLM(Large Language Model)的知识局限性、in-context learning(上下文学习)的token限制、重新进行模型微调成本高以及数据安全考虑等痛点,以已有知识库作为背景知识,让AI模型从基于记忆和理解进行答案编造考试,转换成基于垂直领域知识库的开卷考试。
  2. 架构
    分为在线和离线两部分。
    • 离线
      离线部分主要是实现知识库的向量化存储和索引构建。大致包含了文档解析、拆分、入库以及构建索引等步骤。
    • 在线
      在线部分主要是实现Query的意图识别和结果生成。大致包含了Query的解析、基于相似度的查询匹配、构造prompt以及通过LLM输出结果等步骤。
  1. 为什么用向量数据库
    一方面查询场景不能简单通过文本的精确匹配 来得到结果,而是通过语义匹配 来得到结果。向量Embedding能充分包含语义信息;
    另一方面向量数据库在向量的存储和查询上有特有的优势。
  2. 文档解析拆分
    文档解析拆分包含了数据清洗、文本/图片/表格的识别、数据分段等过程。目前已有对应的机器学习和深度学习模型,如RagFlow。
  3. Query解析
    由于用户提问往往具有模糊性和复杂性,需要对问题进行改写、增强、分解
  4. 查询路由
    理解用户query后,在查询路由步骤,通过定义查询路由器以及各个查询数据插件,将用户查询情况传给LLM,通过LLM决策,决定接下来要调用哪个查询插件,然后调用执行路由选择的插件,最后将各个插件预定义格式返回的结果汇总
相关推荐
TTGGGFF2 小时前
什么是RAG重排序? 3 分钟落地最强轻量级重排序模型 BGE-Reranker-v2-m3
rag·重排序
学Linux的语莫2 小时前
Rag操作-Ragas评估
langchain·rag
阿里巴巴P8资深技术专家3 小时前
Spring Boot 实现文档智能解析与向量化:支持 Tika、MinerU、OCR 与 SSE 实时进度反馈
ai·ocr·ai大模型·rag·文档解析·mineru·tike
AI架构师易筋1 天前
AIOps 告警归因中的提示工程:从能用到可上生产(4 阶梯)
开发语言·人工智能·llm·aiops·rag
深色風信子1 天前
SpringAI Rag 文件读取
rag·springai·springai rag
Haooog2 天前
RAG医疗问答系统
java·大模型·项目·rag
一个无名的炼丹师3 天前
GraphRAG深度解析:从原理到实战,重塑RAG检索增强生成的未来
人工智能·python·rag
FranzLiszt18473 天前
基于One API 将本地 Ollama 模型接入 FastGPT
langchain·fastgpt·rag·ollama·one api
石去皿3 天前
从本地知识库到“活”知识——RAG 落地全景指南
c++·python·大模型·rag
小小工匠3 天前
LLM - 从通用对话到自治智能体:Agent / Skills / MCP / RAG 三层架构实战
agent·rag·skill·mcp