RAG简介

  1. 概述
    RAG(Retrieval Augmented Generation)检索增强生成技术,解决了LLM(Large Language Model)的知识局限性、in-context learning(上下文学习)的token限制、重新进行模型微调成本高以及数据安全考虑等痛点,以已有知识库作为背景知识,让AI模型从基于记忆和理解进行答案编造考试,转换成基于垂直领域知识库的开卷考试。
  2. 架构
    分为在线和离线两部分。
    • 离线
      离线部分主要是实现知识库的向量化存储和索引构建。大致包含了文档解析、拆分、入库以及构建索引等步骤。
    • 在线
      在线部分主要是实现Query的意图识别和结果生成。大致包含了Query的解析、基于相似度的查询匹配、构造prompt以及通过LLM输出结果等步骤。
  1. 为什么用向量数据库
    一方面查询场景不能简单通过文本的精确匹配 来得到结果,而是通过语义匹配 来得到结果。向量Embedding能充分包含语义信息;
    另一方面向量数据库在向量的存储和查询上有特有的优势。
  2. 文档解析拆分
    文档解析拆分包含了数据清洗、文本/图片/表格的识别、数据分段等过程。目前已有对应的机器学习和深度学习模型,如RagFlow。
  3. Query解析
    由于用户提问往往具有模糊性和复杂性,需要对问题进行改写、增强、分解
  4. 查询路由
    理解用户query后,在查询路由步骤,通过定义查询路由器以及各个查询数据插件,将用户查询情况传给LLM,通过LLM决策,决定接下来要调用哪个查询插件,然后调用执行路由选择的插件,最后将各个插件预定义格式返回的结果汇总
相关推荐
智算菩萨1 天前
检索增强生成(RAG)技术原理深度解析:突破大模型知识边界的范式革命
人工智能·rag
一个无名的炼丹师1 天前
[硬核实战] 解锁多模态RAG:构建能“看懂”PDF复杂图表的智能问答系统
人工智能·python·pdf·多模态·rag
TGITCIC2 天前
RAG中的语义理解与语义检索:别再混为一谈
llm·rag·ai agent·ai智能体·ai产品·大模型ai·rag增强检索
沛沛老爹2 天前
LightRAG 系列 5:核心技术解析——HNSW 索引机制与 Web 应用中的毫秒级检索
faiss·hnsw·rag·lightrag·动态调整·索引机制·预热索引
weixin_377634842 天前
【开源RAG】InstructRAG 过滤无关召回内容 提高问答准确率
开源·rag
华东设计之美2 天前
muti-Agent+RAG+KnowledgeGraph构建智能问诊系统的可行性分析
人工智能·软件开发·rag·大模型应用·增强检索生成
沛沛老爹2 天前
LightRAG 系列 7:核心技术解析——整合检索与生成模块,完整走通 LightRAG 的端到端工作流
工作流·rag·端到端·lightrag·知识注入·查询响应
沛沛老爹3 天前
LightRAG系列3:LightRAG 环境准备与快速启动
大模型·llm·安装·helloworld·rag·lightrag·ai入门
TextIn智能文档云平台3 天前
从散乱资料到智能知识库:基于TextIn与Coze的RAG实战
人工智能·pdf·知识库·rag·coze·文档解析