.Net——AI智能体开发基于 Microsoft Agent Framework 实现第三方聊天历史存储

基于 Microsoft Agent Framework 实现第三方聊天历史存储

理解 Microsoft Agent Framework

Microsoft Agent Framework 是一个用于构建对话式 AI 应用的框架,支持自然语言处理和上下文管理。其核心组件包括 Bot Framework SDK 和 Azure Bot Service,但默认聊天历史通常存储在 Azure 服务中。

具体实现可参考NetCoreKevin的kevin.AI.AgentFramework和KevinAIChatMessageStore服务模块

基于NET构建的现代化AI智能体Saas企业级架构:

项目地址:github:https://github.com/junkai-li/NetCoreKevin

Gitee: https://gitee.com/netkevin-li/NetCoreKevin

配置自定义存储提供程序
  1. **实现 ChatMessageStore **

    创建自定义存储类继承 Microsoft.Bot.Builder.IStorage,需实现以下方法:

    csharp 复制代码
     public sealed class KevinChatMessageStore : ChatMessageStore
     {
         private IKevinAIChatMessageStore _chatMessageStore;
         public string ThreadDbKey { get; private set; }
         public KevinChatMessageStore(
             IKevinAIChatMessageStore vectorStore,
             JsonElement serializedStoreState,
             string AIChatsId,
             JsonSerializerOptions? jsonSerializerOptions = null)
         {
             this._chatMessageStore = vectorStore ?? throw new ArgumentNullException(nameof(vectorStore));
             this.ThreadDbKey = AIChatsId; 
         }
    
    
    
         public override async Task AddMessagesAsync(
             IEnumerable<ChatMessage> messages,
             CancellationToken cancellationToken)
         {
             await _chatMessageStore.AddMessagesAsync(messages.Select(x => new ChatHistoryItemDto()
             {
                 Key = this.ThreadDbKey + x.MessageId,
                 Timestamp = DateTimeOffset.UtcNow,
                 ThreadId = this.ThreadDbKey,
                 MessageId = x.MessageId,
                 Role = x.Role.Value,
                 SerializedMessage = JsonSerializer.Serialize(x),
                 MessageText = x.Text
             }).ToList(), cancellationToken);
             // 设置前景色为红色
             // 保存原始颜色,以便之后恢复
             ConsoleColor originalColor = Console.ForegroundColor;
             Console.ForegroundColor = ConsoleColor.Red;
             Console.WriteLine("聊天消息记录:", Color.Red);
             messages.Select(x => x.Text).ToList().ForEach(t => Console.WriteLine(t));
             // 设置前景色为红色
             Console.ForegroundColor = ConsoleColor.Red;
             Console.WriteLine("聊天消息记录添加完成", Color.Red);
             // 恢复原始颜色
             Console.ForegroundColor = originalColor;
         }
    
         public override async Task<IEnumerable<ChatMessage>> GetMessagesAsync(
             CancellationToken cancellationToken)
         {
             var data = await _chatMessageStore.GetMessagesAsync(this.ThreadDbKey, cancellationToken);
             var messages = data.ConvertAll(x => JsonSerializer.Deserialize<ChatMessage>(x.SerializedMessage!)!);
             messages.Reverse();
             ConsoleColor originalColor = Console.ForegroundColor;
             Console.ForegroundColor = ConsoleColor.Red;
             Console.WriteLine("所有聊天消息记录开始:", Color.Red);
             messages.Select(x => x.Text).ToList().ForEach(t => Console.WriteLine(t));
             Console.WriteLine("所有聊天消息记录结束:", Color.Red);
             // 恢复原始颜色
             Console.ForegroundColor = originalColor;
             return messages;
         }
    
         public override JsonElement Serialize(JsonSerializerOptions? jsonSerializerOptions = null) =>
             // We have to serialize the thread id, so that on deserialization you can retrieve the messages using the same thread id.
             JsonSerializer.SerializeToElement(this.ThreadDbKey);
     }
  2. 实现IKevinAIChatMessageStore

    csharp 复制代码
         Task AddMessagesAsync(List<ChatHistoryItemDto> chatHistoryItems, CancellationToken cancellationToken);
    
         Task<List<ChatHistoryItemDto>> GetMessagesAsync(string threadId, CancellationToken cancellationToken);
  3. 实现注入到AI中间件中

    1.定义AI服务:

    csharp 复制代码
          /// <summary>
     /// AI服务
     /// </summary>
     public class AIAgentService : IAIAgentService
     {
         public AIAgentService()
         {
         }
         public async Task<AIAgent> CreateOpenAIAgent(string name, string prompt, string description, string url, string model, string keySecret,
             IList<AITool>? tools = null, ChatResponseFormat? chatResponseFormat = null, Func<IChatClient, IChatClient>? clientFactory = null, ILoggerFactory? loggerFactory = null, IServiceProvider? services = null)
         {
             OpenAIClientOptions openAIClientOptions = new OpenAIClientOptions();
             openAIClientOptions.Endpoint = new Uri(url);
             var ai = new OpenAIClient(new ApiKeyCredential(keySecret), openAIClientOptions);
             if (chatResponseFormat != default)
             {
                 ChatOptions chatOptions = new()
                 {
                     ResponseFormat = chatResponseFormat
                 };
                 return ai.GetChatClient(model).CreateAIAgent(new ChatClientAgentOptions()
                 {
                     Name = name,
                     Instructions = prompt,
                     ChatOptions = chatOptions,
                     Description = description
                 });
             }
             return ai.GetChatClient(model).CreateAIAgent(instructions: prompt, name: name, prompt, tools, clientFactory, loggerFactory, services);
         }
    
         public async Task<AIAgent> CreateOpenAIAgent(string msg, string url, string model, string keySecret, ChatClientAgentOptions chatClientAgentOptions)
         {
             OpenAIClientOptions openAIClientOptions = new OpenAIClientOptions();
             openAIClientOptions.Endpoint = new Uri(url);
             var ai = new OpenAIClient(new ApiKeyCredential(keySecret), openAIClientOptions); 
             return ai.GetChatClient(model).CreateAIAgent(chatClientAgentOptions);
         }
    
    
         /// <summary>
         /// 智能体转换为McpServerTool
         /// </summary>
         /// <param name="aIAgent">智能体</param>
         /// <returns></returns>
         /// <exception cref="NotImplementedException"></exception>
         public McpServerTool AIAgentAsMcpServerTool(AIAgent aIAgent)
         {
             return McpServerTool.Create(aIAgent.AsAIFunction());
         }
    
         /// <summary>
         /// 获取代理
         /// </summary>
         /// <returns></returns>
         public IChatClient GetChatClient(string url, string model, string keySecret)
         {
             OpenAIClientOptions openAIClientOptions = new OpenAIClientOptions();
             openAIClientOptions.Endpoint = new Uri(url);
             var ai = new OpenAIClient(new ApiKeyCredential(model), openAIClientOptions);
             return ai.GetChatClient(keySecret).AsIChatClient();
         }
    
         public async Task<(AIAgent, AgentRunResponse)> CreateOpenAIAgentAndSendMSG(string msg, string name, string prompt, string description, string url, string model, string keySecret,
             IList<AITool>? tools = null, ChatResponseFormat? chatResponseFormat = null, Func<IChatClient, IChatClient>? clientFactory = null, ILoggerFactory? loggerFactory = null, IServiceProvider? services = null)
         {
             OpenAIClientOptions openAIClientOptions = new OpenAIClientOptions();
             openAIClientOptions.Endpoint = new Uri(url);
             var ai = new OpenAIClient(new ApiKeyCredential(keySecret), openAIClientOptions);
             var aiAgent = ai.GetChatClient(model).CreateAIAgent(instructions: prompt, name: name, prompt, tools, clientFactory, loggerFactory, services);
             if (chatResponseFormat != default)
             {
                 ChatOptions chatOptions = new()
                 {
                     ResponseFormat = chatResponseFormat
                 };
                 aiAgent = ai.GetChatClient(model).CreateAIAgent(new ChatClientAgentOptions()
                 {
                     Name = name,
                     Instructions = prompt,
                     ChatOptions = chatOptions,
                     Description = description
                 });
             }
             var reslut = await aiAgent.RunAsync(msg);
             return (aiAgent, reslut);
         }
    
         public async Task<(AIAgent, AgentRunResponse)> CreateOpenAIAgentAndSendMSG(string msg, string url, string model, string keySecret, ChatClientAgentOptions chatClientAgentOptions)
         {
             OpenAIClientOptions openAIClientOptions = new OpenAIClientOptions();
             openAIClientOptions.Endpoint = new Uri(url);
             var ai = new OpenAIClient(new ApiKeyCredential(keySecret), openAIClientOptions); 
             var aiAgent = ai.GetChatClient(model).CreateAIAgent(chatClientAgentOptions); 
             var reslut = await aiAgent.RunAsync(msg);
             return (aiAgent, reslut);
         }
     } 

2.使用AI服务

csharp 复制代码
          addAi.Content = (await aIAgentService.CreateOpenAIAgentAndSendMSG(add.Content, aIModels.EndPoint, aIModels.ModelName, aIModels.ModelKey,new ChatClientAgentOptions
    {
        Name= aiapp.Name, 
        Instructions = aIPrompts.Prompt,
        Description = aIPrompts.Description ?? "你是一个智能体,请根据你的提示词进行相关回答",
        ChatMessageStoreFactory = ctx =>
        {
            // Create a new chat message store for this agent that stores the messages in a vector store.
            return new KevinChatMessageStore(
               kevinAIChatMessageStore,
               ctx.SerializedState,
              par.AIChatsId.ToString(),
               ctx.JsonSerializerOptions);
        }
    })).Item2.Text;
数据库设计建议

对于关系型数据库(如 SQL Server),建议的表结构:

sql 复制代码
 /// <summary>
 /// 专门用于存储AI聊天记录的表
 /// </summary>
 [Table("TAIChatMessageStore")]
 [Description("专门用于存储AI聊天记录的表")]
 [Index(nameof(Key))]
 [Index(nameof(ThreadId))]
 [Index(nameof(Role))]
 [Index(nameof(MessageId))]
 public class TAIChatMessageStore : CUD_User
 {
     [MaxLength(200)]
     public string Key { get; set; }

     [MaxLength(100)]

     public string ThreadId { get; set; }

     [Description("消息时间stamp")]
     public DateTimeOffset? Timestamp { get; set; }

     /// <summary>
     /// 角色标识
     /// </summary>
     [MaxLength(50)]
     public string Role { get; set; }
     public string SerializedMessage { get; set; }
     /// <summary>
     /// 消息内容
     /// </summary>

     public string? MessageText { get; set; }
     /// <summary>
     /// 消息id
     /// </summary>
     [Description("消息id")]
     [MaxLength(100)] 
     public string? MessageId { get; set; }
 }
实现数据持久化
  1. 写入示例

    使用 Entity Framework Core 保存数据:

    csharp 复制代码
         public async Task AddMessagesAsync(List<ChatHistoryItemDto> chatHistoryItems, CancellationToken cancellationToken)
         {
             var adddata = chatHistoryItems.Select(t => new TAIChatMessageStore
             {
                 Id = SnowflakeIdService.GetNextId(),
                 CreateTime = DateTime.Now,
                 CreateUserId = CurrentUser.UserId,
                 IsDelete = false,
                 TenantId = CurrentUser.TenantId,
                 ThreadId = t.ThreadId,
                 Timestamp = t.Timestamp,
                 Role = t.Role,
                 Key = t.Key,
                 SerializedMessage = t.SerializedMessage,
                 MessageText = t.MessageText,
                 MessageId = t.MessageId
             }).ToList();
             aIChatMessageStoreRp.AddRange(adddata);
             await aIChatMessageStoreRp.SaveChangesAsync();
         }
  2. 读取示例

    csharp 复制代码
     public Task<List<ChatHistoryItemDto>> GetMessagesAsync(string threadId, CancellationToken cancellationToken)
     {
         return aIChatMessageStoreRp.Query().Where(t => t.ThreadId == threadId && t.IsDelete == false).Select(t => new ChatHistoryItemDto
         {
             Key = t.Key,
             ThreadId = t.ThreadId,
             Timestamp = t.Timestamp,
             SerializedMessage = t.SerializedMessage,
             MessageText = t.MessageText,
             Role = t.Role,
             MessageId = t.MessageId
         }).ToListAsync();
     }
性能优化建议
  • 为高频查询字段(如 UserIdChannelId)添加索引
  • 实现数据分片策略应对大规模历史记录
  • 考虑使用 Redis 缓存热点对话数据
安全注意事项
  • 加密存储敏感对话内容
  • 实现数据保留策略定期清理旧记录
  • 遵守 GDPR 等数据隐私法规
测试验证方法
  1. 编写单元测试验证存储接口实现
  2. 使用 Bot Framework Emulator 进行端到端测试
  3. 进行负载测试验证性能表现
扩展可能性
  1. 添加全文检索支持(如 Azure Cognitive Search)
  2. 实现跨渠道对话历史同步
  3. 开发分析模块生成对话洞察报告

这种实现方式允许完全控制数据存储位置和格式,同时保持与 Bot Framework 的兼容性。根据具体需求可选择 SQL Server、Cosmos DB 或其他数据库解决方案。

相关推荐
Darenm1117 小时前
关于AI 面试官项目:智选ai 基于 Vue3 + Django + Dify 的全栈开发实战
人工智能·python·django
掘金安东尼7 小时前
代理式人工智能:让大模型从“被动回答”走向“主动执行”
人工智能
啊阿狸不会拉杆7 小时前
《数字图像处理》第 6 章 - 彩色图像处理
图像处理·人工智能·opencv·算法·计算机视觉·数字图像处理
油泼辣子多加7 小时前
【信创】中间件对比
人工智能·深度学习·算法·中间件
我怎么又饿了呀8 小时前
DataWhale RAG入门级教程
人工智能·语言模型
阿拉斯攀登8 小时前
AIoT:从万物互联到万物智联的进化之路
人工智能·aiot·ai物联网
拉姆哥的小屋8 小时前
基于多模态深度学习的城市公园社交媒体评论智能分析系统——从BERTopic主题建模到CLIP图文一致性的全栈实践
人工智能·python·深度学习·矩阵·媒体
工藤学编程8 小时前
零基础学AI大模型之RunnableParallel
人工智能