MoE 区别于传统的 Transformer 是其参数分布极为不均
传统Transformer (175B GPT-3): ├─ 96层,每层参数量相近 ├─ Layer 1: 1.8B参数 ├─ Layer 2: 1.8B参数 ├─ ... └─ Layer 96: 1.8B参数 特点:参数分布均匀 ✅ MoE模型 (Switch Transformer-1.6T): ├─ Embedding: 1B参数 ├─ Layer 1 (标准Attention): 1B参数 ├─ Layer 2 (MoE层): 128B参数!⚠️ │ ├─ 64个Expert,每个2B参数 │ └─ 路由器:0.01B参数 ├─ Layer 3 (标准Attention): 1B参数 ├─ Layer 4 (MoE层): 128B参数!⚠️ ├─ ... └─ Layer 32 (MoE层): 128B参数 特点:参数分布极不均匀!❌如果使用 ZeRO-3,当计算的时候all-gather 所有模型参数,如果 expert 数量很多,例如 64 个,那么总显存可能带 256G, 远超一个 GPU所能承载的
Expert Parallelism
核心思想
Expert并行 (EP):
不同GPU负责不同的Expert
只加载被本GPU负责的Expert参数
Token根据路由结果发送到对应GPU
配置:EP=64(64个GPU,每个负责1个Expert)
参数分配:
├─ GPU 0: Expert 0 (2GB)
├─ GPU 1: Expert 1 (2GB)
├─ GPU 2: Expert 2 (2GB)
├─ ...
└─ GPU 63: Expert 63 (2GB)每个GPU显存占用:
- Expert参数:2GB(只有1个Expert)✅
- 共享层参数:1GB(Attention等)
- 激活值:根据收到的token数量
Pytorch分布式训练/多卡训练(六) —— Expert Parallelism (MoE的特殊策略)
hxxjxw2025-12-18 17:58
相关推荐
Java后端的Ai之路21 小时前
【Python 教程15】-Python和Web那个村的李富贵21 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作冬奇Lab1 天前
一天一个开源项目(第15篇):MapToPoster - 用代码将城市地图转换为精美的海报设计腾讯云开发者1 天前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南CareyWYR1 天前
每周AI论文速递(260202-260206)hopsky1 天前
大模型生成PPT的技术原理禁默1 天前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战心疼你的一切1 天前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码AI绘画哇哒哒1 天前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南数据分析能量站1 天前
Clawdbot(现名Moltbot)-现状分析