【vLLM 学习】Prithvi Geospatial Mae

vLLM 是一款专为大语言模型推理加速而设计的框架,实现了 KV 缓存内存几乎零浪费,解决了内存管理瓶颈问题。

更多 vLLM 中文文档及教程可访问 →vllm.hyper.ai/

*在线运行 vLLM 入门教程:零基础分步指南

源码 examples/offline_inference/prithvi_geospatial_mae.py

复制代码
# SPDX-License-Identifier: Apache-2.0

"""
这是一个演示脚本,显示如何使用
带有 vLLM 的 PrithviGeospatialMAE 模型
该脚本基于: https://huggingface.co/ibm-nasa-geospatial/prithvi-eo-2.0-300m-tl-sen1floods11/blob/main/main/inference.py# noqa
目标模型权重: https://huggingface.co/ibm-nasa-geospatial/prithvi-eo-2.0-300m-tl-sen1floods11/resolve/main/main/prithvi-eo-eo-eo-eo-eo-eo-eo-v2-300m-tl-sen1.pt# noqa
运行此脚本的要求是:
 - 在 Python 环境中安装 [terratorch, albumentations, rasterio]
 - 在脚本 model 文件夹中下载模型权重
 (直到将正确的 config.json 文件上传到 HF 前都将临时度量)
 - 下载输入示例图像 (India_900498_S2Hand.tif) 并将其放入
带有脚本的同一文件夹 (或用 -data_file 参数指定)
运行以下示例:
python prithvi_geospatial_mae.py
"""# noqa: E501
import argparse
import datetime
import os
import re
from typing import Union

import albumentations
import numpy as np
import rasterio
import torch
from einops import rearrange
from terratorch.datamodules import Sen1Floods11NonGeoDataModule

from vllm import LLM

NO_DATA = -9999
NO_DATA_FLOAT = 0.0001
OFFSET = 0
PERCENTILE = 99

model_config = """{
  "architectures": ["PrithviGeoSpatialMAE"],
  "num_classes": 0,
  "pretrained_cfg": {
    "task_args": {
      "task": "SemanticSegmentationTask",
      "model_factory": "EncoderDecoderFactory",
      "loss": "ce",
      "ignore_index": -1,
      "lr": 0.001,
      "freeze_backbone": false,
      "freeze_decoder": false,
      "plot_on_val": 10,
      "optimizer": "AdamW",
      "scheduler": "CosineAnnealingLR"
    },
    "model_args": {
      "backbone_pretrained": false,
      "backbone": "prithvi_eo_v2_300_tl",
      "decoder": "UperNetDecoder",
      "decoder_channels": 256,
      "decoder_scale_modules": true,
      "num_classes": 2,
      "rescale": true,
      "backbone_bands": [
        "BLUE",
        "GREEN",
        "RED",
        "NIR_NARROW",
        "SWIR_1",
        "SWIR_2"
      ],
      "head_dropout": 0.1,
      "necks": [
        {
          "name": "SelectIndices",
          "indices": [
            5,
            11,
            17,
            23
          ]
        },
        {
          "name": "ReshapeTokensToImage"
        }
      ]
    },
    "optimizer_params" : {
      "lr": 5.0e-05,
      "betas": [0.9, 0.999],
      "eps": [1.0e-08],
      "weight_decay": 0.05,
      "amsgrad": false,
      "maximize": false,
      "capturable": false,
      "differentiable": false
    },
    "scheduler_params" : {
        "T_max": 50,
        "eta_min": 0,
        "last_epoch": -1,
        "verbose": "deprecated"
    }
  },


  "torch_dtype": "float32"
}
"""

# 临时为模型创建「config.json」文件。
# 当正确的 config.json 在 HF 平台可用后,该文件将自动消失
with open(os.path.join(os.path.dirname(__file__), "./model/config.json"),
 'w') as config_file:
    config_file.write(model_config)

datamodule_config = {
 'bands': ['BLUE', 'GREEN', 'RED', 'NIR_NARROW', 'SWIR_1', 'SWIR_2'],
 'batch_size':
 16,
 'constant_scale':
 0.0001,
 'data_root':
 '/dccstor/geofm-finetuning/datasets/sen1floods11',
 'drop_last':
 True,
 'no_data_replace':
 0.0,
 'no_label_replace':
 -1,
 'num_workers':
 8,
 'test_transform': [
        albumentations.Resize(always_apply=False,
                              height=448,
                              interpolation=1,
                              p=1,
                              width=448),
        albumentations.pytorch.ToTensorV2(transpose_mask=False,
                                          always_apply=True,
                                          p=1.0)
 ],
}


class PrithviMAE:

 def __init__(self):
 print("Initializing PrithviMAE model")
        self.model = LLM(model=os.path.join(os.path.dirname(__file__),
 "./model"),
                         skip_tokenizer_init=True,
                         dtype="float32")

 def run(self, input_data, location_coords):
 print("################ Running inference on vLLM ##############")
 # 合并数据到一个数据结构中
        mm_data = {
 "pixel_values":
            torch.empty(0) if input_data is None else input_data,
 "location_coords":
            torch.empty(0) if location_coords is None else location_coords
 }

        prompt = {"prompt_token_ids": [1], "multi_modal_data": mm_data}

        outputs = self.model.encode(prompt, use_tqdm=False)
 print(
 "################ Inference done (it took seconds)  ##############"
 )

 return outputs[0].outputs.data


def generate_datamodule():
    datamodule = Sen1Floods11NonGeoDataModule(
        data_root=datamodule_config['data_root'],
        batch_size=datamodule_config["batch_size"],
        num_workers=datamodule_config["num_workers"],
        bands=datamodule_config["bands"],
        drop_last=datamodule_config["drop_last"],
        test_transform=datamodule_config["test_transform"
 ""])

 return datamodule


def process_channel_group(orig_img, channels):

 """
    参数:
        orig_img:表示原始图像(参考图像)的 torch.Tensor,
                  形状为 (bands, H, W)。
        channels:表示 RGB 通道的索引列表。

    返回:
        原始图像的 torch.Tensor,形状为 (num_channels, height, width)
    """

    orig_img = orig_img[channels, ...]
    valid_mask = torch.ones_like(orig_img, dtype=torch.bool)
    valid_mask[orig_img == NO_DATA_FLOAT] = False

 # 重缩放 (增强对比)
    max_value = max(3000, np.percentile(orig_img[valid_mask], PERCENTILE))
    min_value = OFFSET

    orig_img = torch.clamp((orig_img - min_value) / (max_value - min_value), 0,
 1)

 # 0 作为无数据
    orig_img[~valid_mask] = 0

 return orig_img


def read_geotiff(file_path: str):
 """Read all bands from *file_path* and return image + meta info.

    Args:
        file_path: path to image file.

    Returns:
        np.ndarray with shape (bands, height, width)
        meta info dict
    """

 with rasterio.open(file_path) as src:
        img = src.read()
        meta = src.meta
 try:
            coords = src.lnglat()
 except Exception:
 # 无法读取 coords
            coords = None

 return img, meta, coords


def save_geotiff(image, output_path: str, meta: dict):
 """将多波段图像保存为 GeoTiff 文件。

    参数:
        image: 形状为 (bands, height, width) 的 np.ndarray 数组
        output_path: 图像保存路径
        meta: 包含元信息的字典
    """

 with rasterio.open(output_path, "w", **meta) as dest:
 for i in range(image.shape[0]):
            dest.write(image[i, :, :], i + 1)

 return


def _convert_np_uint8(float_image: torch.Tensor):
    image = float_image.numpy() * 255.0
    image = image.astype(dtype=np.uint8)

 return image


def load_example(
    file_paths: list[str],
    mean: list[float] = None,
    std: list[float] = None,
    indices: Union[list[int], None] = None,
):
 """通过加载 *file_paths* 中的图像构建输入样本。

    参数:
        file_paths: 文件路径列表
        mean: 包含 *file_paths* 中各图像每个波段均值的列表
        std: 包含 *file_paths* 中各图像每个波段标准差的列表

    返回:
       生成的样本 np.array
       *file_paths* 中各图像的元信息列表
    """

    imgs = []
    metas = []
    temporal_coords = []
    location_coords = []

 for file in file_paths:
        img, meta, coords = read_geotiff(file)

 # 重缩放(不要在空数据上归一化)
        img = np.moveaxis(img, 0, -1) # channels last for rescaling # 最后一个通道用于重缩放
 if indices is not None:
            img = img[..., indices]
 if mean is not None and std is not None:
            img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)

        imgs.append(img)
        metas.append(meta)
 if coords is not None:
            location_coords.append(coords)

 try:
 match = re.search(r'(\d{7,8}T\d{6})', file)
 if match:
                year = int(match.group(1)[:4])
                julian_day = match.group(1).split('T')[0][4:]
 if len(julian_day) == 3:
                    julian_day = int(julian_day)
 else:
                    julian_day = datetime.datetime.strptime(
                        julian_day, '%m%d').timetuple().tm_yday
                temporal_coords.append([year, julian_day])
 except Exception as e:
 print(f'Could not extract timestamp for {file} ({e})')

    imgs = np.stack(imgs, axis=0) # num_frames, H, W, C
    imgs = np.moveaxis(imgs, -1, 0).astype("float32")
    imgs = np.expand_dims(imgs, axis=0) # add batch di # 添加批 di

 return imgs, temporal_coords, location_coords, metas


def run_model(input_data,
              temporal_coords,
              location_coords,
              model,
              datamodule,
              img_size,
              lightning_model=None):
 # 当图像尺寸不能被 img_size 整除时进行反射填充
    original_h, original_w = input_data.shape[-2:]
    pad_h = (img_size - (original_h % img_size)) % img_size
    pad_w = (img_size - (original_w % img_size)) % img_size
    input_data = np.pad(input_data,
 ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)),
                        mode="reflect")

 # 构建滑动窗口
    batch_size = 1
    batch = torch.tensor(input_data, device="cpu")
    windows = (batch.unfold(3, img_size,
                            img_size).unfold(4, img_size, img_size))
    h1, w1 = windows.shape[3:5]
    windows = rearrange(windows,
 "b c t h1 w1 h w -> (b h1 w1) c t h w",
                        h=img_size,
                        w=img_size)

 # 如果窗口数量大于批大小则分割批
    num_batches = windows.shape[0] // batch_size if windows.shape[
 0] > batch_size else 1
    windows = torch.tensor_split(windows, num_batches, dim=0)

 if torch.cuda.is_available():
        device = torch.device('cuda')
 else:
        device = torch.device('cpu')

 if temporal_coords:
        temporal_coords = torch.tensor(temporal_coords,
                                       device=device).unsqueeze(0)
 else:
        temporal_coords = None
 if location_coords:
        location_coords = torch.tensor(location_coords[0],
                                       device=device).unsqueeze(0)
 else:
        location_coords = None

 # 运行模型
    pred_imgs = []
 for x in windows:
 # Apply standardization
 # 应用标准化
        x = datamodule.test_transform(
            image=x.squeeze().numpy().transpose(1, 2, 0))
        x = datamodule.aug(x)['image']

 with torch.no_grad():
            x = x.to(device)
            pred = model.run(x, location_coords=location_coords)
 if lightning_model:
                pred_lightning = lightning_model(
                    x,
                    temporal_coords=temporal_coords,
                    location_coords=location_coords)
                pred_lightning = pred_lightning.output.detach().cpu()
 if not torch.equal(pred, pred_lightning):
 print("Inference output is not equal")
        y_hat = pred.argmax(dim=1)

        y_hat = torch.nn.functional.interpolate(y_hat.unsqueeze(1).float(),
                                                size=img_size,
                                                mode="nearest")

        pred_imgs.append(y_hat)

    pred_imgs = torch.concat(pred_imgs, dim=0)

 # 从块中读取图像
    pred_imgs = rearrange(
        pred_imgs,
 "(b h1 w1) c h w -> b c (h1 h) (w1 w)",
        h=img_size,
        w=img_size,
        b=1,
        c=1,
        h1=h1,
        w1=w1,
 )

 # 剪切填充区域,还原原始大小
    pred_imgs = pred_imgs[..., :original_h, :original_w]

 # 挤压(批大小 1)
    pred_imgs = pred_imgs[0]

 return pred_imgs


def main(
    data_file: str,
    output_dir: str,
    rgb_outputs: bool,
    input_indices: list[int] = None,
):
    os.makedirs(output_dir, exist_ok=True)

 # 读取模型    ---------------------------------------------------------------
    model_obj = PrithviMAE()
    datamodule = generate_datamodule()
    img_size = 256 # Size of Sen1Floods11

 # 读取数据    ---------------------------------------------------------------
    input_data, temporal_coords, location_coords, meta_data = load_example(
        file_paths=[data_file],
        indices=input_indices,
 )

    meta_data = meta_data[0] #  仅一张图像

 if input_data.mean() > 1:
        input_data = input_data / 10000 # 转换到 0-1 之间

 # 运行模型    ---------------------------------------------------------------

    channels = [
        datamodule_config['bands'].index(b) for b in ["RED", "GREEN", "BLUE"]
 ] # BGR -> RGB

    pred = run_model(input_data, temporal_coords, location_coords, model_obj,
                     datamodule, img_size)

 # 保存 pred
    meta_data.update(count=1, dtype="uint8", compress="lzw", nodata=0)
    pred_file = os.path.join(
        output_dir,
 f"pred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
    save_geotiff(_convert_np_uint8(pred), pred_file, meta_data)

 # 保存 图像 和 pred
    meta_data.update(count=3, dtype="uint8", compress="lzw", nodata=0)

 if input_data.mean() < 1:
        input_data = input_data * 10000 # Scale to 0-10000 # 缩放到 0-10000

    rgb_orig = process_channel_group(
        orig_img=torch.Tensor(input_data[0, :, 0, ...]),
        channels=channels,
 )

    pred[pred == 0.] = np.nan
    img_pred = rgb_orig * 0.7 + pred * 0.3
    img_pred[img_pred.isnan()] = rgb_orig[img_pred.isnan()]

    img_pred_file = os.path.join(
        output_dir,
 f"rgb_pred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
    save_geotiff(
        image=_convert_np_uint8(img_pred),
        output_path=img_pred_file,
        meta=meta_data,
 )

 # 保存图片 rgb
 if rgb_outputs:
        rgb_file = os.path.join(
            output_dir, "original_rgb_"
 f"{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
        save_geotiff(
            image=_convert_np_uint8(rgb_orig),
            output_path=rgb_file,
            meta=meta_data,
 )


if __name__ == "__main__":
    parser = argparse.ArgumentParser("MAE run inference", add_help=False)

    parser.add_argument(
 "--data_file",
 type=str,
        default="./India_900498_S2Hand.tif",
 help="Path to the file.",
 )
    parser.add_argument(
 "--output_dir",
 type=str,
        default="output",
 help="Path to the directory where to save outputs.",
 )
    parser.add_argument(
 "--input_indices",
        default=[1, 2, 3, 8, 11, 12],
 type=int,
        nargs="+",
 help=
 "0-based indices of the six Prithvi channels to be selected from the  "
 "input. By default selects [1,2,3,8,11,12] for S2L1C data.",
 )
    parser.add_argument(
 "--rgb_outputs",
        action="store_true",
 help="If present, output files will only contain RGB channels. "
 "Otherwise, all bands will be saved.",
 )
    args = parser.parse_args()

    main(**vars(args))
相关推荐
Coder_Boy_16 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱18 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º20 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
寻星探路20 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
Codebee1 天前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º1 天前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys1 天前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56781 天前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子1 天前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder1 天前
hot100-二叉树I
数据结构·python·算法·二叉树