基于CNN-SENet+SHAP分析的回归预测模型!

往期精彩内容:

单步预测-风速预测模型代码全家桶-CSDN博客

半天入门!锂电池剩余寿命预测(Python)-CSDN博客

VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客

超强预测算法:XGBoost预测模型-CSDN博客

基于麻雀优化算法SSA的预测模型------代码全家桶-CSDN博客

高创新 | CEEMDAN + SSA-TCN-BiLSTM-Attention预测模型-CSDN博客

独家原创 | 基于TCN-SENet +BiGRU-GlobalAttention并行预测模型-CSDN博客

独家原创 | BiTCN-BiGRU-CrossAttention融合时空特征的高创新预测模型-CSDN博客

CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)-CSDN博客

时空特征融合的BiTCN-Transformer并行预测模型-CSDN博客

独家首发 | 基于多级注意力机制的并行预测模型-CSDN博客

独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测-CSDN博客

暴力涨点! | 基于 Informer+BiGRU-GlobalAttention的并行预测模型-CSDN博客

重大更新!锂电池剩余寿命预测新增 CALCE 数据集_calce数据集-CSDN博客

基于 VMD滚动分解+Transformer-GRU并行的锂电池剩余寿命预测模型

快速傅里叶变换暴力涨点!基于时频特征融合的高创新时间序列分类模型-CSDN博客

基于CNN-BiLSTM-Attention的回归预测模型!-CSDN博客

独家原创 | CEEMDAN-Transformer-BiLSTM并行 + XGBoost组合预测-CSDN博客

涨点创新 | 基于 Informer-LSTM的并行预测模型-CSDN博客

一区直接写!CEEMDAN分解 + Informer-LSTM +XGBoost组合预测模型

基于Informer-SENet的光伏电站发电功率预测对比合集!6组对比预测模型,毕业论文、小论文直接写!

独家创新!基于ICEEMDAN+SHAP可解释性分析的锂电池剩余寿命预测高创新模型!

论文复现!基于SAM-BiGRU网络的锂电池RUL预测

独家创新!基于Informer-BiGRUGATT-CrossAttention的预测模型

高创新!基于ICEEMDAN+MSCNN-BiGRU-Attention并行预测模型

独家首发!基于VMD滚动分解+Transformer-LSTM的并行预测模型

前言

本文基于 Kaggle平台---洪水数据集的回归预测(文末附数据集),更新基于CNN-SENet的预测模型,并提供结合SHAP理论开展模型可解释性分析!

1 合集更新介绍

1.1 新增 SHAP 可视化分析

注意:本次更新可视化模型 继续加入 基于 Python 的回归预测模型合集中, 之前购买的同学请及时更新下载!(性价比极高)

1.2 合集简介

什么是回归预测?和一般的时间序列预测有什么不同?

(1)回归预测

  • 回归预测通常指的是利用特征来预测一个连续型的目标变量。例如,根据房屋的面积、地理位置、房龄等特征来预测房价。在回归预测中,目标变量一般是连续的实数值,可以是任意范围内的数值。

  • 回归预测的特征可以包括各种类型的数据,包括数值型、类别型、文本型等,而目标变量是连续的实数值。

  • 常见的回归模型包括线性回归、岭回归、Lasso回归、决策树回归、随机森林回归等。

(2)时间序列预测:

  • 时间序列预测是指根据一系列按时间顺序排列的数据点,预测未来的数值。这些数据点通常是按照固定时间间隔采集的,比如每天、每月或每年。

  • 时间序列预测的目标是根据过去的数据来预测未来的数值,因此时间顺序在预测任务中非常重要。

  • 时间序列预测通常涉及到一些特定的方法,比如ARIMA模型、LSTM(Long Short-Term Memory)神经网络、Prophet模型等,这些方法能够充分利用数据中的时间结构和周期性。

● 数据集:Kaggle平台---洪水数据集

● 环境框架:python 3.9 pytorch 2.1 及其以上版本均可运行

● 使用对象:入门学习,论文需求者

● 代码保证:代码注释详细、即拿即可跑通。

● 配套文件:详细的环境配置安装教程,模型、参数讲解文档

包括完整流程数据代码处理:

回归预测数据集制作、数据加载、模型定义、参数设置、模型训练、模型测试、预测可视化、模型评估

全网最低价,入门回归预测最佳教程,高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!一次购买,享受永久免费更新福利!

2 数据预处理

数据集格式为CSV文件,共50000个样本,20个特征,来预测FloodProbability(洪水概率): 该结果变量基于上述因素预测洪水的可能性,可能表示为0到1之间的概率。

按照7:2:1划分训练集、验证集、测试集:

3 基于CNN-SENet的回归模型

3.1 定义CNN-SENet网络模型

3.2 设置参数,训练模型

50个epoch,mse极低,CNN-SENet网络效果显著,模型能够充分提取数据的多尺度特征,收敛速度快,性能特别优越,效果明显。

4 模型评估与可视化

4.1 模型评估

4.2 回归预测拟合

4.3 基于 SHAP 可解释性分析

5 代码、数据整理如下:

点击下方卡片获取代码!

相关推荐
九尾狐ai14 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
2501_9481201514 小时前
基于RFID技术的固定资产管理软件系统的设计与开发
人工智能·区块链
Halo_tjn14 小时前
基于封装的专项 知识点
java·前端·python·算法
(; ̄ェ ̄)。14 小时前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习
杀生丸学AI14 小时前
【物理重建】PPISP :辐射场重建中光度变化的物理合理补偿与控制
人工智能·大模型·aigc·三维重建·世界模型·逆渲染
vlln14 小时前
【论文速读】递归语言模型 (Recursive Language Models): 将上下文作为环境的推理范式
人工智能·语言模型·自然语言处理
春日见14 小时前
如何避免代码冲突,拉取分支
linux·人工智能·算法·机器学习·自动驾驶
龙腾AI白云15 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·数据挖掘
Hgfdsaqwr15 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
weixin_3954489115 小时前
export_onnx.py_0130
pytorch·python·深度学习