Day44 训练和测试的规范写法

1. 彩色 / 灰度图的训练测试规范:"封装在函数里"

简单说就是把 "训练模型" 和 "测试模型" 的代码,分别写成两个独立的函数(比如叫train()test())。

  • 好处:代码更整洁,想训练就调用train(),想测试就调用test(),后续复用也方便。

2. 展平操作:"除 batchsize 外全部展平"

比如你有一张彩色图,形状是[batchsize, 高, 宽, 通道数](比如[32, 28, 28, 3],代表 32 张 28×28 的 3 通道彩色图)。"展平" 就是把高、宽、通道数这几个维度合并成一个维度,变成[32, 28×28×3](也就是[32, 2352])。

  • 目的:把图片的 "二维像素 + 通道" 变成 "一维向量",方便后续模型计算。

3. dropout 操作:"训练丢、测试关"

dropout 是防止模型 "学太死" 的技巧:

  • 训练阶段:随机让一部分神经元 "罢工"(不参与计算),避免模型过度依赖某些神经元。
  • 测试阶段 :要切换到eval模式,把 dropout 关掉(所有神经元都工作),这样才能得到稳定的测试结果。

@浙大疏锦行

相关推荐
后端小肥肠4 分钟前
别再盲目抽卡了!Seedance 2.0 成本太高?教你用 Claude Code 100% 出片
人工智能·aigc·agent
每日新鲜事10 分钟前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
Coder_Boy_16 分钟前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
挖坑的张师傅33 分钟前
对 AI Native 架构的一些思考
人工智能
LinQingYanga1 小时前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能
pccai-vip1 小时前
过去24小时AI创业趋势分析
人工智能
SEO_juper1 小时前
AI SEO实战:整合传统技术与AI生成搜索的优化框架
人工智能·chatgpt·facebook·seo·geo·aeo
pp起床1 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
方见华Richard1 小时前
自指-认知几何架构 可行性边界白皮书(务实版)
人工智能·经验分享·交互·原型模式·空间计算
冬奇Lab1 小时前
AI时代的"工具自由":我是如何进入细糠时代的
人工智能·ai编程