Day44 训练和测试的规范写法

1. 彩色 / 灰度图的训练测试规范:"封装在函数里"

简单说就是把 "训练模型" 和 "测试模型" 的代码,分别写成两个独立的函数(比如叫train()test())。

  • 好处:代码更整洁,想训练就调用train(),想测试就调用test(),后续复用也方便。

2. 展平操作:"除 batchsize 外全部展平"

比如你有一张彩色图,形状是[batchsize, 高, 宽, 通道数](比如[32, 28, 28, 3],代表 32 张 28×28 的 3 通道彩色图)。"展平" 就是把高、宽、通道数这几个维度合并成一个维度,变成[32, 28×28×3](也就是[32, 2352])。

  • 目的:把图片的 "二维像素 + 通道" 变成 "一维向量",方便后续模型计算。

3. dropout 操作:"训练丢、测试关"

dropout 是防止模型 "学太死" 的技巧:

  • 训练阶段:随机让一部分神经元 "罢工"(不参与计算),避免模型过度依赖某些神经元。
  • 测试阶段 :要切换到eval模式,把 dropout 关掉(所有神经元都工作),这样才能得到稳定的测试结果。

@浙大疏锦行

相关推荐
啊森要自信几秒前
CANN ops-cv:揭秘视觉算子的硬件感知优化与内存高效利用设计精髓
人工智能·深度学习·架构·transformer·cann
说私域几秒前
流量裂变与数字重塑:基于AI智能名片小程序的短视频全域引流范式研究
人工智能·小程序·流量运营·私域运营
繁华落尽,寻一世真情2 分钟前
【基于 AI 的智能小说创作助手】MuMuAINovel-sqlite 基于 AI 的智能小说创作助手
数据库·人工智能·sqlite
kong79069283 分钟前
AI大模型-机器学习
人工智能·机器学习
szcsun54 分钟前
机器学习(五)--决策树
人工智能·决策树·机器学习
scott1985124 分钟前
transformer中的位置编码:从绝对位置编码到旋转位置编码
人工智能·深度学习·transformer
人工智能AI技术5 分钟前
自注意力机制:AI的“超能力放大镜”
人工智能
weixin_468466857 分钟前
目标识别精度指标与IoU及置信度关系辨析
人工智能·深度学习·算法·yolo·图像识别·目标识别·调参
Hi202402177 分钟前
在Docker容器中安全运行OpenClaw:无需虚拟机,体验AI助手
人工智能·安全·docker·openclaw
&星痕&8 分钟前
人工智能:深度学习:1.pytorch概述(2)
人工智能·深度学习