2025 大模型的发展

AI的2025关键进展

从Karpathy的视角来看

1. 模型训练方法

经典的模型获取范式(对数据和算力的强依赖,典型地通过预训练-- 监督微调-- RLHF三个步骤, 2020-2025年初)-->由于数据无法达到像算力的增长水平,所以寻找新的模型能力提升变得尤为关键

  • 思路1: 获取高质量数据 > 获取海量数据()
  • 思路2:更有效的训练方法(摆脱数据强依赖),典型的就是DRPO,泛化来讲就是RLVR(Reinforcement Learning from Verifiable Rewards,RLVR)
  • 关键创新来自于让模型在可自动验证环境中接受强化学习训练,例如数据题、代码或者逻辑题等。基于模型自行探索的策略,把复杂问题拆解为中间步骤,并反复试探、修正,进而逼近答案(在DeepSeek R1中很多优秀的案例)
  • 相比以往的SFT或者RLHF,有些_推理过程_是很难认为设计的。RLVR则是通过奖励函数优化,让模型自行摸索,找到最有效的解题方式
  • 此外,与SFT和RLH这种_计算量相对较小的薄层微调_来说,RLVR使用更客观、难以被投机取巧的奖励函数,使得训练可以跑的更久。结果就是RLVR提供了更高的能力/成本比,大量吞噬了原本用于预训练的算力

结论:2025年的大部分模型性能提升,不是来自于模型规模的暴涨,而是来自相似规模模型 + 更长的RL训练。并在此阶段引入了新的 scaling law:通过推理阶段生成更长的思考链条、投入更多的测试时算力,模型能力持续提升,呈现出新的scaling law

  • OpenAI的 o1 是第一个明确展示RLVR思路的模型,而2025年初的o3则是让人直观感受到质变拐点的版本
相关推荐
悟纤几秒前
学习与专注音乐流派 (Study & Focus Music):AI 音乐创作终极指南 | Suno高级篇 | 第33篇
大数据·人工智能·深度学习·学习·suno·suno api
饭饭大王6661 分钟前
迈向智能体时代——构建基于 `ops-transformer` 的可持续 AI 系统
人工智能·深度学习·transformer
晚霞的不甘1 分钟前
CANN 支持强化学习:从 Isaac Gym 仿真到机械臂真机控制
人工智能·神经网络·架构·开源·音视频
心疼你的一切9 分钟前
Unity异步编程神器:Unitask库深度解析(功能+实战案例+API全指南)
深度学习·unity·c#·游戏引擎·unitask
哈__12 分钟前
CANN加速Image-to-Image转换:风格迁移与图像编辑优化
人工智能·计算机视觉
ujainu12 分钟前
解码昇腾AI的“中枢神经”:CANN开源仓库全景式技术解析
人工智能·开源·cann
Elastic 中国社区官方博客17 分钟前
Elasticsearch:Workflows 介绍 - 9.3
大数据·数据库·人工智能·elasticsearch·ai·全文检索
组合缺一18 分钟前
Solon AI (Java) v3.9 正式发布:全能 Skill 爆发,Agent 协作更专业!仍然支持 java8!
java·人工智能·ai·llm·agent·solon·mcp
哈__19 分钟前
CANN: AI 生态的异构计算核心,从架构到实战全解析
人工智能·架构