【Golang】LeetCode 322. 零钱兑换

322. 零钱兑换

题目描述

思路

「零钱兑换」这道题目的解决思路几乎与「完全平方数」相同。主要的区别在于,「完全平方数」要求我们求表示一个数值最少需要多少个"完全平方数",相当于硬币的面额就是自然数的"完全平方数"。而「零钱兑换」这道题预先给定了我们可以使用的零钱的面额。

我们使用动态规划来解决这道题,首先初始化一个数组dp,它的长度是amount + 1,用来表示数值为i的面额最少需要多少个零钱来凑出。我们初始化i == 0之外每一个dp[i]的值为amount + 1,经过对dp数组的维护之后,如果dp[i] == amount + 1,就代表这个面额无法通过当前给定的零钱的面额表示出来(比如i == 3,但是只有面额2, 4, 6, 8可用)。基于解决「完全平方数」的经验,我们不难直接推导出维护dp数组的状态转移方程,那就是dp[i] = min(dp[i - coins[j]] + 1, dp[i])。我们使用两层循环来对dp进行维护,i遍历的是当前要表示的面额的数值,在最外层循环;j是第二层循环,用于对给定的零钱的面额值进行遍历。只有当i >= coins[j]的时候,才需要对dp进行维护。

需要注意的点是,在初始化dp[i] = amount + 1时,一定不能设置dp[0]的值也是amount + 1。对于面额0,从dp数组的表示意义上来说,它的值就应该设置为0,因为面额为0的状态不需要任何零钱来凑出。

基于以上思路和状态转移方程,我们就可以开始解题了。

Golang 题解

go 复制代码
func coinChange(coins []int, amount int) int {
    n := len(coins)
    dp := make([]int, amount + 1)
    for i := 1; i <= amount; i ++ {
        dp[i] = amount + 1
    }

    for i := 1; i <= amount; i ++ {
        for j := 0; j < n; j ++ {
            if i >= coins[j] {
                dp[i] = min(dp[i - coins[j]] + 1, dp[i])
            }
        }
    }

    if dp[amount] == amount + 1 {
        return -1
    }
    return dp[amount]
}
相关推荐
那个村的李富贵9 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
power 雀儿9 小时前
Scaled Dot-Product Attention 分数计算 C++
算法
琹箐9 小时前
最大堆和最小堆 实现思路
java·开发语言·算法
renhongxia110 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
坚持就完事了10 小时前
数据结构之树(Java实现)
java·算法
算法备案代理10 小时前
大模型备案与算法备案,企业该如何选择?
人工智能·算法·大模型·算法备案
赛姐在努力.10 小时前
【拓扑排序】-- 算法原理讲解,及实现拓扑排序,附赠热门例题
java·算法·图论
野犬寒鸦11 小时前
从零起步学习并发编程 || 第六章:ReentrantLock与synchronized 的辨析及运用
java·服务器·数据库·后端·学习·算法
霖霖总总11 小时前
[小技巧66]当自增主键耗尽:MySQL 主键溢出问题深度解析与雪花算法替代方案
mysql·算法
rainbow688911 小时前
深入解析C++STL:map与set底层奥秘
java·数据结构·算法