阿里云Milvus支持哪些向量检索算法?

阿里云Milvus支持多种向量检索算法,主要包括HNSW、IVF_FLAT、IVF_PQ、IVF_SQ8、FLAT、ANNOY、DISKANN等索引类型,适用于不同数据规模和性能需求场景。

主要索引类型及适用场景

HNSW(分层可导航小世界):基于图结构的索引算法,适合高精度、低延迟的搜索场景,支持亿级向量数据,内存占用中等,查询速度极快,召回率约98%。

IVF_FLAT(倒排文件+暴力搜索):通过K-means聚类将向量分组,查询时仅搜索与目标向量最接近的若干簇,适合10万-1000万条数据规模,查询速度中等,召回率约98%。

IVF_PQ(倒排文件+乘积量化):在IVF基础上进行向量量化压缩,适合1000万-10亿条超大规模数据,查询速度极快,存储成本极低,但召回率约90%,存在一定精度损失。

IVF_SQ8(倒排文件+标量量化):将向量压缩为8位整数,适合磁盘或内存资源有限的场景,查询速度快,存储开销低,召回率约95%。

FLAT(无索引):直接暴力搜索所有向量,适合小规模数据(≤10万条)或需要100%精确召回的场景,查询速度极慢但精度最高。

DISKANN:基于磁盘的索引算法,适合超大规模数据(≥10亿条),查询速度快,存储成本极低,召回率约95%。

距离度量方式

Milvus支持多种相似度计算方式:

  • 欧氏距离(L2):衡量两个向量在空间中的直线距离,适用于图像检索、视觉特征匹配等场景

  • 内积(IP):计算两个向量的点积,适合非标准化数据或关注向量幅度和角度的场景

  • 余弦相似度:衡量向量方向一致性,广泛应用于文本语义匹配,取值范围[-1, 1],值越大越相似

选型建议

  • 小规模高精度:选择FLAT(≤10万条)

  • 中等规模平衡性能:选择IVF_FLAT(10万-1000万条)

  • 大规模低延迟:选择HNSW(≥1亿条)

  • 超大规模低成本:选择IVF_PQ或DISKANN(≥10亿条)

用户可根据数据规模、查询延迟要求、召回率要求和存储成本预算,灵活选择合适的索引算法组合。

相关推荐
lusasky2 小时前
Milvus为什么需要MinIO
milvus
蒙奇D索大2 小时前
【数据结构】排序算法精讲|折半插入排序全解:高效优化、性能对比、实战剖析
数据结构·学习·考研·算法·排序算法·改行学it
汽车仪器仪表相关领域2 小时前
ZDT-III 通用电机测试系统
数据库·算法·单元测试·压力测试·可用性测试
前端小白在前进2 小时前
力扣刷题:矩阵重叠
算法·leetcode·矩阵
QuiteCoder2 小时前
机器学习视角下的鸢尾花形态学分类与自动化流水线架构研究报告
机器学习·分类·自动化
啊阿狸不会拉杆2 小时前
《数字图像处理》-实验1
图像处理·人工智能·算法·计算机视觉·数字图像处理
学Linux的语莫2 小时前
向量数据库milvus的搭建部署
milvus
zore_c2 小时前
【C语言】排序算法——快速排序详解(含多种变式)!!!
c语言·数据结构·笔记·算法·排序算法·深度优先·推荐算法