Flink ML Naive Bayes 多分类朴素贝叶斯

1. 输入列与输出列

输入列(Input Columns)

参数名 类型 默认值 说明
featuresCol Vector "features" 特征向量列
labelCol Integer "label" 标签列(要预测的类别)

输出列(Output Columns)

参数名 类型 默认值 说明
predictionCol Integer "prediction" 预测标签

2. 参数(Parameters)详解

2.1 NaiveBayesModel(预测侧)参数

Key 默认值 类型 说明
modelType "multinomial" String 模型类型(目前支持 multinomial)
featuresCol "features" String 特征列名
predictionCol "prediction" String 预测列名

2.2 NaiveBayes(训练侧)额外参数

Key 默认值 类型 说明
labelCol "label" String 标签列名
smoothing 1.0 Double 平滑参数(拉普拉斯平滑,避免零概率)
smoothing 是干什么的?

在 multinomial 朴素贝叶斯里,经常会遇到某类样本中某个特征从未出现过的情况,这会导致该条件概率为 0,从而让整个后验概率变成 0。
smoothing 的作用就是避免这种"零概率"问题,让模型更稳健。

工程上:

  • 1.0 是最常见的默认选择
  • 数据稀疏、类别较多时,适当提高 smoothing 往往更稳定

3. Java 示例代码解读

你贴的示例逻辑非常标准,分四步:

1)构造训练数据(features, label)

2)构造预测数据(features)

3)创建 NaiveBayes 并设置参数

4)fit 训练模型 → transform 预测 → collect 打印结果

3.1 训练数据

java 复制代码
DataStream<Row> trainStream =
        env.fromElements(
                Row.of(Vectors.dense(0, 0.), 11),
                Row.of(Vectors.dense(1, 0), 10),
                Row.of(Vectors.dense(1, 1.), 10));
Table trainTable = tEnv.fromDataStream(trainStream).as("features", "label");

这里的标签是 1011(多分类不一定要从 0 开始),特征向量是 2 维。

3.2 预测数据

java 复制代码
DataStream<Row> predictStream =
        env.fromElements(
                Row.of(Vectors.dense(0, 1.)),
                Row.of(Vectors.dense(0, 0.)),
                Row.of(Vectors.dense(1, 0)),
                Row.of(Vectors.dense(1, 1.)));
Table predictTable = tEnv.fromDataStream(predictStream).as("features");

预测表只有 features 列,符合朴素贝叶斯的推理输入。

3.3 创建与训练

java 复制代码
NaiveBayes naiveBayes =
        new NaiveBayes()
                .setSmoothing(1.0)
                .setFeaturesCol("features")
                .setLabelCol("label")
                .setPredictionCol("prediction")
                .setModelType("multinomial");

NaiveBayesModel naiveBayesModel = naiveBayes.fit(trainTable);

3.4 预测输出

java 复制代码
Table outputTable = naiveBayesModel.transform(predictTable)[0];

输出表会新增 prediction 列。

4. 一个小坑:prediction 类型读取

文档定义 predictionColInteger,但示例中用:

java 复制代码
double predictionResult = (Double) row.getField(naiveBayes.getPredictionCol());

这容易让人误会 prediction 是 Double。更稳的写法是按 Integer 读取:

java 复制代码
Integer prediction = (Integer) row.getField(naiveBayes.getPredictionCol());

建议你在工程里把 label 与 prediction 都保持 Integer 类型,减少类型转换问题。

5. multinomial 朴素贝叶斯的"工程适配"建议

1)multinomial 更适合"计数/频次类特征"

multinomial Naive Bayes 常见于:

  • 词袋计数(word counts)
  • TF/TF-IDF(有时也用,但严格上更像连续值,需要注意分布假设)
  • 事件次数、出现频次等离散统计特征

如果你的 features 是非常连续的实数(如温度、金额、时长),multinomial 的假设可能不够贴合,效果未必好。此时你可以考虑:

  • 先做分桶(binning)
  • 或选择 Logistic Regression / LinearSVC 等线性模型

2)特征必须非负更稳

multinomial 模型通常假设特征类似"出现次数/频次",因此:

  • 负数特征会让概率解释变得很奇怪
  • 工程上建议保证 features >= 0(或做平移/分桶)

3)smoothing 的调参思路

  • 类别多、数据稀疏:smoothing 可以适当大一些
  • 数据充足:smoothing=1.0 往往足够

6. 总结

Flink ML 的 Naive Bayes 非常适合做多分类 baseline,尤其在文本/稀疏特征场景下优势明显:

  • 输入:features(Vector) + label(Integer)
  • 输出:prediction(Integer)
  • 关键参数:modelType=multinomialsmoothing 平滑避免零概率
  • 用法:fit() 训练 → transform() 预测,完全遵循 Flink ML 的 Table API 体系
相关推荐
Hello.Reader6 小时前
Flink ZooKeeper HA 实战原理、必配项、Kerberos、安全与稳定性调优
安全·zookeeper·flink
AI_56786 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
CRzkHbaXTmHw6 小时前
探索Flyback反激式开关电源的Matlab Simulink仿真之旅
大数据
七夜zippoe7 小时前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥7 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
忆~遂愿7 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
Liue612312317 小时前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘
忆~遂愿8 小时前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
米羊1218 小时前
已有安全措施确认(上)
大数据·网络
Lun3866buzha9 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘