Flink ML Naive Bayes 多分类朴素贝叶斯

1. 输入列与输出列

输入列(Input Columns)

参数名 类型 默认值 说明
featuresCol Vector "features" 特征向量列
labelCol Integer "label" 标签列(要预测的类别)

输出列(Output Columns)

参数名 类型 默认值 说明
predictionCol Integer "prediction" 预测标签

2. 参数(Parameters)详解

2.1 NaiveBayesModel(预测侧)参数

Key 默认值 类型 说明
modelType "multinomial" String 模型类型(目前支持 multinomial)
featuresCol "features" String 特征列名
predictionCol "prediction" String 预测列名

2.2 NaiveBayes(训练侧)额外参数

Key 默认值 类型 说明
labelCol "label" String 标签列名
smoothing 1.0 Double 平滑参数(拉普拉斯平滑,避免零概率)
smoothing 是干什么的?

在 multinomial 朴素贝叶斯里,经常会遇到某类样本中某个特征从未出现过的情况,这会导致该条件概率为 0,从而让整个后验概率变成 0。
smoothing 的作用就是避免这种"零概率"问题,让模型更稳健。

工程上:

  • 1.0 是最常见的默认选择
  • 数据稀疏、类别较多时,适当提高 smoothing 往往更稳定

3. Java 示例代码解读

你贴的示例逻辑非常标准,分四步:

1)构造训练数据(features, label)

2)构造预测数据(features)

3)创建 NaiveBayes 并设置参数

4)fit 训练模型 → transform 预测 → collect 打印结果

3.1 训练数据

java 复制代码
DataStream<Row> trainStream =
        env.fromElements(
                Row.of(Vectors.dense(0, 0.), 11),
                Row.of(Vectors.dense(1, 0), 10),
                Row.of(Vectors.dense(1, 1.), 10));
Table trainTable = tEnv.fromDataStream(trainStream).as("features", "label");

这里的标签是 1011(多分类不一定要从 0 开始),特征向量是 2 维。

3.2 预测数据

java 复制代码
DataStream<Row> predictStream =
        env.fromElements(
                Row.of(Vectors.dense(0, 1.)),
                Row.of(Vectors.dense(0, 0.)),
                Row.of(Vectors.dense(1, 0)),
                Row.of(Vectors.dense(1, 1.)));
Table predictTable = tEnv.fromDataStream(predictStream).as("features");

预测表只有 features 列,符合朴素贝叶斯的推理输入。

3.3 创建与训练

java 复制代码
NaiveBayes naiveBayes =
        new NaiveBayes()
                .setSmoothing(1.0)
                .setFeaturesCol("features")
                .setLabelCol("label")
                .setPredictionCol("prediction")
                .setModelType("multinomial");

NaiveBayesModel naiveBayesModel = naiveBayes.fit(trainTable);

3.4 预测输出

java 复制代码
Table outputTable = naiveBayesModel.transform(predictTable)[0];

输出表会新增 prediction 列。

4. 一个小坑:prediction 类型读取

文档定义 predictionColInteger,但示例中用:

java 复制代码
double predictionResult = (Double) row.getField(naiveBayes.getPredictionCol());

这容易让人误会 prediction 是 Double。更稳的写法是按 Integer 读取:

java 复制代码
Integer prediction = (Integer) row.getField(naiveBayes.getPredictionCol());

建议你在工程里把 label 与 prediction 都保持 Integer 类型,减少类型转换问题。

5. multinomial 朴素贝叶斯的"工程适配"建议

1)multinomial 更适合"计数/频次类特征"

multinomial Naive Bayes 常见于:

  • 词袋计数(word counts)
  • TF/TF-IDF(有时也用,但严格上更像连续值,需要注意分布假设)
  • 事件次数、出现频次等离散统计特征

如果你的 features 是非常连续的实数(如温度、金额、时长),multinomial 的假设可能不够贴合,效果未必好。此时你可以考虑:

  • 先做分桶(binning)
  • 或选择 Logistic Regression / LinearSVC 等线性模型

2)特征必须非负更稳

multinomial 模型通常假设特征类似"出现次数/频次",因此:

  • 负数特征会让概率解释变得很奇怪
  • 工程上建议保证 features >= 0(或做平移/分桶)

3)smoothing 的调参思路

  • 类别多、数据稀疏:smoothing 可以适当大一些
  • 数据充足:smoothing=1.0 往往足够

6. 总结

Flink ML 的 Naive Bayes 非常适合做多分类 baseline,尤其在文本/稀疏特征场景下优势明显:

  • 输入:features(Vector) + label(Integer)
  • 输出:prediction(Integer)
  • 关键参数:modelType=multinomialsmoothing 平滑避免零概率
  • 用法:fit() 训练 → transform() 预测,完全遵循 Flink ML 的 Table API 体系
相关推荐
Katecat996633 小时前
YOLOv8-Seg改进系列真空喷嘴质量检测与分类任务实现
yolo·分类·数据挖掘
小鸡脚来咯5 小时前
Git 新手入门指南
大数据·git·elasticsearch
JOBkiller1235 小时前
基于YOLOv8-Seg-RepHGNetV2的银耳缺陷检测与分类实现
yolo·分类·数据挖掘
说私域8 小时前
基于AI智能名片链动2+1模式服务预约商城系统的社群运营与顾客二次消费吸引策略研究
大数据·人工智能·小程序·开源·流量运营
2501_9413331011 小时前
YOLOv11改进版_CAA_HSFPN网络_六种手势检测与分类_1
yolo·分类·数据挖掘
塔能物联运维12 小时前
隧道照明“智能进化”:PLC 通信 + AI 调光守护夜间通行生命线
大数据·人工智能
highly200912 小时前
Gitflow
大数据·elasticsearch·搜索引擎
humors22113 小时前
韩秀云老师谈买黄金
大数据·程序人生
重生之绝世牛码13 小时前
Linux软件安装 —— SSH免密登录
大数据·linux·运维·ssh·软件安装·免密登录
StarChainTech14 小时前
无人机租赁平台:开启智能租赁新时代
大数据·人工智能·微信小程序·小程序·无人机·软件需求