0x3f 第19天 javase黑马81-87 ,三更1-23 hot100子串

子串的前缀和预处理

比如 nums=[1,2,3,4,5,6],要想计算子数组 [3,4,5] 的元素和,可以用前缀 [1,2,3,4,5] 的元素和,减去另一个前缀 [1,2] 的元素和

  1. 理解「空间换时间」的思想:用 __init__ 预处理前缀和数组(牺牲 O (n) 空间)

用O (n) 空间得到子串的前缀和,对于实际工程中(如数据库查询、缓存系统)的常见场景 ------ 预处理的价值正是体现在 "多次复用" 上

两处错误

复制代码
class NumArray:

    def __init__(self, nums: List[int]):
        s = [0]*(len(nums)+1)
        for i,x in enumerate(nums):
            s[i+1]=s[i]+x
        ----------------

    def sumRange(self, left: int, right: int) -> int:
        return self.s[right+1]-self.s[left-1]

1.init函数里必须写上self.s =s

  • s__init__ 里的局部变量 ,如果不赋值给 self.s__init__ 执行完后 s 就会被 Python 回收,sumRange 方法根本找不到这个前缀和数组;
  • self.s = s 相当于给实例 "存了个档",把计算好的前缀和数组永久存在实例里,后续调用任何方法(比如 sumRange)都能通过 self.s 访问到。

2.包含left和right之间的nums元素和:

return self.s[right+1]-self.s[left-1]

应该是return self.s[right+1]-self.s[left],因为s[left]保存的是 0-left-1 的前缀和!

时间复杂度O(n)空间复杂度O(n)

复制代码
class NumArray:

    def __init__(self, nums: List[int]):
        s = [0]*(len(nums)+1)
        for i,x in enumerate(nums):
            s[i+1]=s[i]+x
        self.s=s

    def sumRange(self, left: int, right: int) -> int:
        return self.s[right+1]-self.s[left]

和为k的子数组

不能用滑动窗口,因为有负数,滑动窗口需要满足单调性,当右端点元素进入窗口时,窗口元素和是不能减少的

零神解答加上视频具体事例,搭配食用效果极佳

https://www.bilibili.com/video/BV1gN411E7Zx/?spm_id_from=333.337.search-card.all.click&vd_source=b5cc04f324fc9d6ee48a5febd77392fc

1.核心思想包括

1.前缀和s,因此可以把题目化简为求s 中有多少对下标 (i,j) 满足s[j]−s[i]=k?

1.1写成 s[j]+(−s[i])=k 就能看得更明白,这是梦开始的地方------1. 两数之和

1.2两数之和的思路就是枚举右端点,不断存入哈希表,遇到满足的target-right的left

去哈希表里查找有没有遍历到过 left

2.引入cnt记录枚举过的s[j],key为s[j]

2.1对于本题就是for sj in s:

去cnt里找sj-k

比如遍历到s[j]=16这个情况,16-k=10,发现前面的cnt[10]有两个,那就直接说明有两解

一些额外的思考,关于cnt这个小东西的

这种习惯不是强制的,但符合 "见名知意" 的编码原则 ------ 看到 Counter 就知道是 "统计频次",看到 defaultdict(int) 就知道是 "通用计数"。

之前遇到过cnt = Counter()

这个题是 cnt = defaultdict(int),但是发现使用的目的是相同的,就引发了些思考

总结一下就是

在力扣的字符串类题目中(比如找异位词、最长无重复子串、字符频率统计),开发者的默认习惯是:

  • 只要涉及「字符频次」,优先用 Counter(无需额外思考,语义直观);
  • defaultdict(int) 更多用在「非字符计数场景」(比如前缀和次数、数字出现次数、自定义对象计数)。
复制代码
class Solution:
    def subarraySum(self, nums: List[int], k: int) -> int:
        s = [0]*(len(nums)+1)
        ans = 0
        for i,x in enumerate(nums):
            s[i+1] = s[i]+x
        cnt = defaultdict(int)
        for sj in s:
            ans += cnt[sj-k]
            cnt[sj]+=1
        return ans

优化:边求前缀和,边找和为k 的解

复制代码
class Solution:
    def subarraySum(self, nums: List[int], k: int) -> int:
        ans = 0
        cnt = defaultdict(int)
        cnt[0]=1
        s=0
        for x in nums:
            s +=x
            ans+=cnt[s-k]
            cnt[s]+=1
        return ans
相关推荐
invicinble4 分钟前
对于后端要和linux打交道要掌握的点
linux·运维·python
喵手7 分钟前
Python爬虫零基础入门【第三章:Requests 静态爬取入门·第4节】列表页→详情页:两段式采集(90%项目都这样)!
爬虫·python·python爬虫实战·python爬虫工程化实战·python爬虫零基础入门·requests静态爬取·两段式采集
zzZ··*9 分钟前
自动登录上海大学校园
python·网络协议·selenium
weisian15110 分钟前
进阶篇-4-数学篇-3--深度解析AI中的向量概念:从生活到代码,一文吃透核心逻辑
人工智能·python·生活·向量
写代码的【黑咖啡】11 分钟前
Python中的Msgpack:高效二进制序列化库
开发语言·python
MistaCloud14 分钟前
Pytorch进阶训练技巧(二)之梯度层面的优化策略
人工智能·pytorch·python·深度学习
永远都不秃头的程序员(互关)14 分钟前
【决策树深度探索(一)】从零搭建:机器学习的“智慧之树”——决策树分类算法!
算法·决策树·机器学习
程序员-King.21 分钟前
day161—动态规划—最长递增子序列(LeetCode-300)
算法·leetcode·深度优先·动态规划·递归
AIFQuant21 分钟前
2026 全球股市实时行情数据 API 对比指南
python·websocket·金融·数据分析·restful
爱吃肉的鹏22 分钟前
使用Flask在本地调用树莓派摄像头
人工智能·后端·python·flask·树莓派