机器学习算法入门------概念及发展史/核心概念及组件/分类算法实战

一、机器学习简介

机器学习概念:

是实现人工智能的一种途径,核心是让计算机系统通过数据自动学习规律,并基于这些规律进行预测或决策。无需显式编程。

机器学习算法可分为:

有监督学习:有标签

无监督学习:无标签

半监督学习:部分有标签,其他无标签

强化学习:Agent(代理)+环境+奖励+反馈

1.有监督学习:有标签

回归算法:连续

①KNN:

K近邻,周围k个最近的邻居类别。物以类聚,人以群分。通过距离远近判断来归类

欧氏距离

②线性回归:

通过回归算法,构建线性方程拟合数据,

比如房价预测,

分类算法:离散

③逻辑回归:

线性回归+激活函数sigmoid+阈值判断来分类

既分类又回归

④决策树:

通过树形结构对数据进行分类,拟合数据,每一个树节点代表特征,叶子节点代表分类。

根据分裂依据不同分为:

ID3算法

C4.5算法

CART算法

⑤集成学习:

通过多个基学习器进行学习。

bagging思想:

装袋法:

它是通过基学习器并行训练

通过有放回采样(自助法+bootstrap)+

平权投票多次表决来

取基学习器里最好的来预测结果。

代表算法:

随机森林算法(RF)

Boosting思想:

提升法

它是通过多个基学习器学习串行训练,关注上一个学习器的不足,进行优化。再通过加权投票来预测结果。

代表算法:

AdaBoost

GBDT

XGBoost

⑥朴素贝叶斯

使用贝叶斯公式,基于概率

分类算法,通过线性回归+激活函数来构建方程拟合函数。

1.2无监督学习:无标签

聚类算法:根据样本相似度分类

K-means

1.3半监督学习:部分有标签,其他无标签

1.4强化学习:Agent(代理)+环境+奖励+反馈

二、核心概念及组件

机器学习

样本 --- 一行数据

特征 --- 一列数据

标签 --- 要预测的变量

数据集

**训练集:**训练模型的数据------训练阶段

验证集:验证模型的数据。验证模型性能 ---- 测试阶段

测试集:测试模型的数据,测试模型性能 ---- 测试阶段

三、

四、机器学习建模完整流程

1.获取数据

2.数据基本处理

3.特征功能

4.机器学习(模型训练)

5.评估模型

回归指标:MSE((真实值-预测值)^2)、MAE(|真实值-预测值|)

分类指标:准确率,召回率(预测的全不全),F1

聚类指标:轮廓系数

6.部署与服务

相关推荐
恣逍信点2 小时前
《凌微经 · 理悖相涵》第六章 理悖相涵——关系构型之模因
人工智能·科技·程序人生·生活·交友·哲学
晚霞的不甘2 小时前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频
小程故事多_802 小时前
Agent Infra核心技术解析:Sandbox sandbox技术原理、选型逻辑与主流方案全景
java·开发语言·人工智能·aigc
陈天伟教授2 小时前
人工智能应用- 语言处理:02.机器翻译:规则方法
人工智能·深度学习·神经网络·语言模型·自然语言处理·机器翻译
人机与认知实验室2 小时前
一些容易被人工智能取代的职业
人工智能
茶栀(*´I`*)3 小时前
【NLP入门笔记】:自然语言处理基础与文本预处理
人工智能·自然语言处理·nlp
KYGALYX3 小时前
逻辑回归详解
算法·机器学习·逻辑回归
却道天凉_好个秋3 小时前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
藦卡机器人3 小时前
国产机械臂做的比较好的品牌有哪些?
大数据·数据库·人工智能
迎仔3 小时前
06-AI开发进阶
人工智能