无人机定位滤波器技术解析

无人机定位中常用的滤波器主要有以下几种,它们在状态估计和传感器融合中发挥关键作用:

1. 卡尔曼滤波器(KF)

线性系统的标准滤波器

适用于状态空间模型为线性的系统

包含预测和更新两个步骤

2. 扩展卡尔曼滤波器(EKF)

最常用的无人机定位滤波器

通过一阶泰勒展开处理非线性系统

典型应用:

GPS/IMU融合定位

视觉惯性里程计(VIO)

状态估计(位置、速度、姿态)

3. 无迹卡尔曼滤波器(UKF)

使用无迹变换(Unscented Transform)处理非线性

比EKF更精确,尤其对于强非线性系统

无需计算雅可比矩阵

4. 误差状态卡尔曼滤波器(ESKF)

在误差状态而非完整状态上运行

优点:

更好的数值稳定性

更符合IMU的误差特性

旋转处理更优雅

广泛用于MSCKF、VINS-Mono等VIO算法

5. 互补滤波器

简单高效的姿态估计方法

结合高频IMU和低频磁力计/GPS数据

6. 粒子滤波器(PF)

基于蒙特卡罗方法

适合高度非线性、非高斯系统

计算量大,实时性较差

7. 因子图优化

虽然不是传统滤波器,但在现代定位中广泛使用

优点:

能够优化历史状态

更好地处理闭环检测

适合SLAM应用

实际应用中的选择

GPS/IMU融合

EKF/ESKF最常用

GPS提供绝对位置,IMU提供高频相对运动

视觉惯性里程计(VIO)

ESKF或基于优化的方法

如MSCKF、OKVIS、VINS-Mono

纯视觉定位

直接法:LK光流 + 滤波器

特征法:特征匹配 + 优化

多传感器融合

滤波器设计要点

1. 状态向量选择:

位置、速度、姿态(6-16维)

IMU零偏等参数

2. 传感器模型:

IMU:加速度计+陀螺仪模型

GPS:位置+速度测量模型

视觉:重投影误差模型

3. 时间同步:

不同传感器时间戳对齐

IMU预积分技术

4. 外参标定:

传感器间坐标变换

在线或离线标定

相关推荐
leiming614 小时前
无人机按点飞行脚本
无人机
职业码农NO.114 小时前
开源:AI+无人机巡检系统项目调研
人工智能·python·开源·无人机·智能识别·无人机巡检
Together_CZ3 天前
无人机助力桥梁智慧巡检,基于YOLOv11全系列【n/s/m/l/x】参数模型开发构建AI无人机航拍巡检场景下桥梁锈蚀、开裂、渗漏、脱落检测预警系统
yolo·无人机·yolov11·无人机助力桥梁智慧巡检·ai无人机航拍巡检场景·桥梁锈蚀、开裂、渗漏·脱落检测预警
Deepoch5 天前
智能飞行新纪元:Deepoc开发板如何重塑无人机产业生态
人工智能·无人机·开发板·具身模型·deepoc
EasyDSS5 天前
RTMP推流平台EasyDSS无人机推流直播技术在交通视频监测场景的智能应用
音视频·无人机
GIS数据转换器5 天前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游
深紫色的三北六号5 天前
基于大疆MSDK实现的无人机视觉引导自适应降落功能
无人机·大疆·msdk·一键降落
Coovally AI模型快速验证5 天前
当小龙虾算法遇上YOLO:如何提升太阳能电池缺陷检测精度?
人工智能·深度学习·算法·yolo·目标检测·无人机