深度解析:RAG(检索增强生成)从提问到回答的通用工程逻辑

在生成式 AI 落地应用中,RAG(Retrieval-Augmented Generation)已成为解决大模型"幻觉"、知识滞后及缺乏私域数据支撑的核心方案。

本文将通过"标准工程版"视角,为你拆解 RAG 从接收用户提问到输出最终答案的全链路逻辑。


一、 RAG 的核心灵魂:一句话总纲

RAG 的通用逻辑可以概括为:
将用户问题转化为"可检索的问题",从外部知识中检索最相关的内容,再把这些内容作为上下文约束大模型生成答案。

本质: 让"不确定"的模型,运行在"确定"的知识之上。


二、 标准 RAG 七步法:工程全链路拆解

从用户点击发送到答案生成,标准 RAG 流程遵循以下七个关键步骤:

Step 1:用户提问 (User Query)

原始提问通常是口语化、信息不完整或带有歧义的。注意:这一步的问题通常不可直接用于高质量检索。

Step 2:问题理解与改写 (Query Processing)

  • 目标: 让问题"更适合检索"。
  • 典型操作: 意图识别、关键词补全、技术化改写、多子问题拆分(Multi-Query)。

Step 3:问题向量化 (Query Embedding)

  • 将改写后的 Query 映射到语义空间。
  • 工程要求: 必须与文档向量化使用同一 Embedding 模型。

Step 4:检索相关知识 (Retrieval)

  • 从向量数据库中寻找相关 Chunk。
  • 模式: 向量检索(Top-K)、关键词检索(BM25)或混合检索(Hybrid Search)。

Step 5:结果整理 (去重 + 重排 Re-Rank)

  • 重排(Re-Rank): 引入交叉评分模型,计算 Chunk 与 Query 的真实相关性,过滤噪声,留下"信息密度最高"的内容。

Step 6:上下文构造 (Context Construction)

  • 将检索到的片段、系统指令(System Prompt)与原始问题拼接。
  • 约束: 强制要求模型仅基于提供的资料回答。

Step 7:大模型生成 (Generation)

  • 模型在受控条件下完成生成。这不是"自由发挥",而是"基于证据的归纳"。

补充步骤(Step 8):答案后处理

包括添加引用来源(Citations)、风险内容过滤及格式化输出(JSON/Markdown)。


三、 深度对比:为什么我们需要 RAG?

维度 直接问大模型 (Pure LLM) RAG 模式
知识来源 模型预训练参数 外部实时/私域知识库
知识可更新性 差(需重新微调) 强(实时更新索引)
幻觉风险 低(基于证据)
可追溯性 无(无法提供出处) 有(可标注引用来源)
工程可控性 弱(黑盒) 强(各环节可调优)

四、 总结

1. 流程公式

Answer=LLM(Instructions+Context(Retrieve(Embed(Rewrite(Query)))))Answer = LLM(Instructions + Context(Retrieve(Embed(Rewrite(Query)))))Answer=LLM(Instructions+Context(Retrieve(Embed(Rewrite(Query)))))

2. 核心思想

RAG 的核心思想不是"让模型更聪明",而是通过检索机制,把模型放进一个确定、可验证的知识上下文中,让它在受控条件下完成任务。

相关推荐
落霞的思绪9 小时前
GIS大模型RAG知识库
agent·rag
梵得儿SHI14 小时前
(第十篇)Spring AI 核心技术攻坚全梳理:企业级能力矩阵 + 四大技术栈攻坚 + 性能优化 Checklist + 实战项目预告
java·人工智能·spring·rag·企业级ai应用·springai技术体系·多模态和安全防护
Java后端的Ai之路14 小时前
【RAG技术】- RAG系统调优手段之GraphRAG(全局视野)
人工智能·知识库·调优·rag·graphrag
王建文go1 天前
RAG(宠物健康AI)
人工智能·宠物·rag
玄同7651 天前
LangChain 1.0 模型接口:多厂商集成与统一调用
开发语言·人工智能·python·langchain·知识图谱·rag·智能体
落霞的思绪1 天前
Spring AI Alibaba 集成 Redis 向量数据库实现 RAG 与记忆功能
java·spring·rag·springai
玄同7652 天前
LangChain 1.0 框架全面解析:从架构到实践
人工智能·深度学习·自然语言处理·中间件·架构·langchain·rag
Java后端的Ai之路2 天前
【RAG技术】- RAG系统调优手段之高效召回(通俗易懂附案例)
人工智能·rag·rag系统·召回·rag调优
千桐科技2 天前
qKnow 知识平台核心能力解析|第 03 期:结构化抽取能力全流程介绍
大模型·llm·知识图谱·知识库·rag·qknow·知识平台
OPEN-Source2 天前
大模型实战:大模型推理性能优化与成本控制实战
人工智能·性能优化·rag