核心目标: 在避免过度增加计算成本的前提下,突破局部窗口建模的限制,实现高效的全局特征提取。
核心思想: 通过全局聚类将语义相似的图像块分组为簇,再对每个簇使用共享卷积核进行卷积操作。既保留 CNN 的归纳偏置和计算效率,又获得类似 Transformer 的全局建模能力。

如图所示,主要包括五个步骤:
- 图像分块与聚类中心初始化:将输入图像转换为 H×W 个图像块,每个块均作为潜在聚类中心,并通过可学习参数将原始块特征转换为聚类中心特征向量(下方黄色特征)。
- 提取特征向量子向量: 提取特征向量的子向量进行距离计算(采样间隔 d 设为 8),可以降低高分辨率图像处理的计算成本(上方绿色向量)。
- 全局动态聚类:计算每个聚类中心与特征向量子向量的 L₂范数距离,通过 Top-K 算法选择距离最近的 K-1 个块,与聚类中心共同组成大小为 K 的簇。
- 得到N个簇: 使用 IndexSelect 从聚类中心向量中选择,最终形成 H×W = N 个全局分布的簇。
- 簇上卷积操作:对每个簇采用共享卷积核执行分组卷积(借鉴深度可分离卷积思想),平衡参数数量与计算效率,生成新的特征图。
实验部分可以参考作者论文,这里不过多介绍。