11.3 Pandas 模块功能概览


文章目录

  • 前言
  • [一、 核心功能定位](#一、 核心功能定位)
  • [二、 核心数据结构](#二、 核心数据结构)
    • [2.1 Series(一维数组)](#2.1 Series(一维数组))
    • [2.2 DataFrame(二维表格)](#2.2 DataFrame(二维表格))
  • [三、 主要功能模块](#三、 主要功能模块)
    • [3.1 数据输入/输出](#3.1 数据输入/输出)
    • [3.2 数据清洗](#3.2 数据清洗)
    • [3.3 数据转换](#3.3 数据转换)
    • [3.4 数据统计与分析](#3.4 数据统计与分析)
    • [3.5 数据可视化集成](#3.5 数据可视化集成)
    • [3.6 时间序列处理(特色功能)](#3.6 时间序列处理(特色功能))
  • [四、 核心优势](#四、 核心优势)
    • [4.1 数据对齐](#4.1 数据对齐)
    • [4.2 灵活索引](#4.2 灵活索引)
    • [4.3 高性能](#4.3 高性能)
    • [4.4 易用性](#4.4 易用性)
  • [五、 典型应用场景](#五、 典型应用场景)
  • 总结

前言


一、 核心功能定位

Pandas 是 Python 的 数据分析核心库,专门用于处理和分析结构化数据,相当于 Excel + SQL + 统计工具的 Python 实现。

二、 核心数据结构

2.1 Series(一维数组)

特点:带标签的一维数组

功能:

支持自动对齐的数据操作

提供丰富的索引和切片方法

内置统计计算方法

类比:Excel 单列数据,但功能更强大

2.2 DataFrame(二维表格)

特点:带行列标签的二维表格

功能:

类似 SQL 表或 Excel 电子表格

每列可以是不同的数据类型

支持复杂的行列操作

类比:Excel 工作表 + SQL 表的结合体

三、 主要功能模块

3.1 数据输入/输出

python 复制代码
python
# 支持多种数据格式
pd.read_csv()      # CSV文件
pd.read_excel()    # Excel文件
pd.read_sql()      # 数据库查询
pd.read_json()     # JSON数据
pd.read_html()     # 网页表格
pd.to_csv()        # 导出为CSV
# 等等...

3.2 数据清洗

缺失值处理:填充、删除、插值

数据类型转换:自动检测和手动转换

重复值处理:识别和删除重复行

异常值检测:基于统计方法的异常值识别

3.3 数据转换

重塑数据:pivot(透视)、melt(逆透视)

合并数据:merge(类似SQL JOIN)、concat(拼接)

分组聚合:groupby(分组统计)

数据排序:按值或索引排序

3.4 数据统计与分析

描述性统计:mean(均值)、std(标准差)、count(计数)等

汇总统计:describe() 一键生成统计摘要

相关性分析:计算列间相关系数

时间序列分析:专门的时间序列处理功能

3.5 数据可视化集成

python 复制代码
python
df.plot()          # 直接绘制图表
df.hist()          # 直方图
df.boxplot()       # 箱线图
# 与Matplotlib无缝集成

3.6 时间序列处理(特色功能)

日期范围生成:date_range()

重采样:resample()(降采样/升采样)

滚动窗口计算:rolling()(移动平均等)

时间偏移:shift()(滞后/超前分析)

四、 核心优势

4.1 数据对齐

自动处理不同数据集间的标签对齐

简化了数据合并和运算操作

4.2 灵活索引

支持位置索引、标签索引、布尔索引

多层索引(MultiIndex)支持复杂数据

4.3 高性能

基于 NumPy 构建,底层使用 C 语言优化

向量化操作,避免 Python 循环

4.4 易用性

直观的 API 设计,学习曲线平缓

丰富的文档和社区支持

五、 典型应用场景

场景 使用功能
数据清洗 缺失值处理、重复值删除、数据类型转换
数据探索 描述统计、数据透视、可视化
特征工程 数据转换、特征提取、编码
时间序列分析 重采样、滚动窗口、趋势分析
报表生成 数据聚合、格式转换、导出

总结

Pandas = Excel的灵活 + SQL的强大 + Python的可编程性,是 Python 数据分析的 瑞士军刀。

Pandas 已经成为 Python 数据科学的标准配置,掌握它等于掌握了数据处理的"通用语言"。

相关推荐
love530love14 分钟前
技术复盘:llama-cpp-python CUDA 编译实战 (Windows)
人工智能·windows·python·llama·aitechlab·cpp-python·cuda版本
逄逄不是胖胖1 小时前
《动手学深度学习》-60translate实现
人工智能·python·深度学习
橘颂TA1 小时前
【测试】自动化测试函数介绍——web 测试
python·功能测试·selenium·测试工具·dubbo
爱学习的阿磊1 小时前
Python上下文管理器(with语句)的原理与实践
jvm·数据库·python
m0_736919101 小时前
Python面向对象编程(OOP)终极指南
jvm·数据库·python
one____dream1 小时前
【网安】Reverse-非常规题目
linux·python·安全·网络安全·ctf
冷雨夜中漫步1 小时前
python反转列表reverse()和[::-1]哪个效率更高
开发语言·python
rainbow68891 小时前
Python面向对象编程与异常处理实战
开发语言·python
weixin199701080162 小时前
锦程物流item_get - 获取详情接口对接全攻略:从入门到精通
数据库·python
2501_907136822 小时前
基于Python+QT6的移动硬盘弹出工具
python·软件需求