基于注意力机制的多尺度脉冲神经网络旋转机械故障诊断(西储大学轴承数据,Pytorch)

首先从西储大学轴承数据集中加载四类振动信号数据(正常、滚珠故障、内圈故障、外圈故障),通过滑动窗口分割成固定长度的样本序列。

接着构建了一个包含多尺度特征提取器和注意力脉冲神经元的SNN模型,该模型通过多个时间步模拟生物神经元的脉冲发放过程。

在训练阶段,使用带梯度裁剪的Adam优化器和早停机制,通过交叉熵损失函数优化模型参数,同时采用学习率调度器动态调整学习率。

模型训练完成后,在独立的测试集上进行评估,计算准确率、精确率、召回率和F1分数等性能指标。最后,系统能够对新的振动信号样本进行自动分类,识别轴承的健康状态和故障类型,并生成详细的分类报告和可视化分析结果,为工业设备的状态监测和预防性维护提供决策支持。

详细算法步骤

数据准备阶段:从西储大学轴承数据集中读取四种状态的振动信号数据,包括正常状态和三种不同类型的故障状态,对连续振动信号进行滑动窗口分割,生成固定长度的样本序列,并按照预设比例划分为训练集、验证集和测试集。

特征提取阶段:将预处理后的振动信号输入到多尺度卷积层中,通过不同尺度的卷积核提取信号的局部特征和全局特征,捕捉振动信号在不同时间尺度下的变化模式。

脉冲编码阶段:使用注意力脉冲神经元对提取的特征进行脉冲编码,模拟生物神经元的膜电位累积和脉冲发放过程,通过注意力机制动态调整不同特征的重要性权重。

时空整合阶段:在多个时间步上累积脉冲发放模式,将时域上的动态变化转换为空间特征表示,通过全局平均池化层整合整个时间序列的脉冲活动。

分类决策阶段:将整合后的特征向量输入到全连接分类器中,计算每个故障类别的得分,通过softmax函数将得分转换为概率分布,选择概率最高的类别作为最终诊断结果。

参数优化阶段:在训练过程中,使用交叉熵损失函数衡量预测结果与真实标签的差异,通过反向传播算法计算梯度,采用Adam优化器更新网络参数,同时使用梯度裁剪防止梯度爆炸。

性能监控阶段:在每个训练周期后,在验证集上评估模型性能,记录损失值和准确率的变化趋势,当性能连续多个周期没有显著提升时,触发早停机制终止训练,防止过拟合。

诊断评估阶段:在独立的测试集上评估训练好的模型,计算整体准确率、各类别的精确率、召回率和F1分数,生成混淆矩阵和详细的分类报告,分析模型的误分类情况。

结果可视化阶段:绘制训练过程中的损失曲线和准确率曲线,展示模型的收敛情况;绘制混淆矩阵热力图,直观显示各类别之间的混淆情况;对原始振动信号进行时域、频域和时频域的可视化分析。

从结果可以看出:

训练速度快:16个epoch就达到了最佳效果(由于早停机制)

准确率

训练准确率:100%

验证准确率:100%

测试准确率:99.60%

仅1个误分类:249个测试样本中只有1个被错误分类(将滚珠故障误判为正常)

分类性能优秀

内圈故障和外圈故障的精确率、召回率、F1分数均为100%

滚珠故障的精确率100%,召回率97.4%(这是误分类的那一个样本)

正常的精确率99.2%,召回率100%

担任《Mechanical System and Signal Processing》《中国电机工程学报》《宇航学报》《控制与决策》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测

相关推荐
闲人编程9 分钟前
Elasticsearch搜索引擎集成指南
python·elasticsearch·搜索引擎·jenkins·索引·副本·分片
Light609 分钟前
智链未来:彭山物流园区从物理基建到数据智能体的全维度构建方案
人工智能·系统架构·数字孪生·智慧物流·实施路径·彭山项目
AI资源库13 分钟前
GLM-4.7-Flash模型深入解析
人工智能·语言模型
痴儿哈哈18 分钟前
自动化机器学习(AutoML)库TPOT使用指南
jvm·数据库·python
A尘埃19 分钟前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
花酒锄作田32 分钟前
SQLAlchemy中使用UPSERT
python·sqlalchemy
一切尽在,你来32 分钟前
1.2 LangChain 1.2.7 版本核心特性与升级点
人工智能·langchain
SoleMotive.33 分钟前
一个准程序员的健身日志:用算法调试我的增肌计划
python·程序员·健身·职业转型
LYFlied35 分钟前
AI大时代下前端跨端解决方案的现状与演进路径
前端·人工智能
深蓝电商API37 分钟前
图片验证码识别:pytesseract+opencv入门
人工智能·opencv·计算机视觉·pytesseract