人工智能应用-机器视觉:AI 鉴伪 02.虚假人脸生成

对抗生成网络(GAN)是一种常用的人脸合成模型。GAN 包含两个核心模块:生成器(Generator)和判别器(Discriminator)。生成器的任务是从随机噪声中"创造"出一张看似真实的图片,而判别器则负责判别一张图片是真实的还是生成的。生成器和判别器之间展开了一场"智力博弈":生成器不断提升生成图片的质量,试图骗过判别器。判别器变得越来越敏锐,努力识破生成器的"伪装"。经过这种反复对抗的过程,生成器最终学会了生成极其逼真的图片。

当我们用GAN 生成人脸时,一张随机噪声图片可以被看作是一组生成因子的组合,生成器将这些因子"转化"成一张人脸。当训练数据足够丰富时,生成器可以产生几乎无法与真实照片区分的合成人脸。图 27.3展示了通过 GAN 生成的虚假人脸------它们看起来和真实人脸几乎没有区别。

基于 GAN 生成的人脸图片。图片来源:Karras et al. 2018

相关推荐
可能是阿伦2 小时前
探索 cccc:一个面向工程协作的多代理协作内核
人工智能·低代码·ai·web3
jkyy20142 小时前
健康监测驾驶系统赋能:解锁新能源汽车健康出行新场景
大数据·人工智能·物联网·健康医疗
北京耐用通信2 小时前
耐达讯自动化Profibus光纤链路模块:跨行业通信的“隐形桥梁”,让控制更丝滑!
人工智能·网络协议·自动化·信息与通信
UR的出不克2 小时前
基于Stacking集成学习的乙型肝炎预测模型:从数据到部署的完整实践
人工智能·机器学习·集成学习
AI营销先锋3 小时前
2026 年度深度报告跨境GEO服务商TOP3榜单原圈科技领跑AI营销,破解增长难题
人工智能
地理探险家3 小时前
【YOLOv8 农业实战】11 组大豆 + 棉花深度学习数据集分享|附格式转换 + 加载代码
人工智能·深度学习·yolo·计算机视觉·目标跟踪·农业·大豆
我不是8神3 小时前
字节跳动 Eino 框架(Golang+AI)知识点全面总结
开发语言·人工智能·golang
TonyLee0173 小时前
半监督学习介绍
人工智能·python·深度学习·机器学习