5.脑电信号的预处理及数据分析要点

1.脑电

1.1脑电

1.2脑电采集系统

1.3电极放置

2.伪迹

在脑电(EEG)分析中,Mean Global Field Power(MGFP,平均全局场功率) 是用来衡量某一时间段内,整个头皮电极阵列上脑电活动强度的一个指标 。它本质上是所有电极在该时刻电位值的标准差,反映的是脑电地形图的空间"起伏"程度------也就是电场强度。

公式定义:
GFP(t)=K1i=1∑K(Vi(t)−Vmean(t))2

其中:

  • Vi​(t) :第 i 个电极在时间 t 的电位;

  • Vmean​(t) :所有电极在时间 t 的平均电位;

  • K :电极总数。

这个值越大,说明脑电活动在空间上越"活跃",地形图越"陡峭";值越小,说明地形图越"平坦",脑电活动越弱

2.1生理伪迹

肌电波形一般跟炸毛一样

"叠加平均"(Ensemble Averaging)是诱发电位(EP)研究中最基本也最经典的信号处理步骤,其核心思想可以概括为一句话:

多次重复刺激下记录到的脑电信号按刺激时刻对齐后逐点相加,再除以刺激次数 ,让"锁时"且波形固定的诱发电位成分同相叠加而增强,而时间随机、均值为零的背景噪声(含肌电伪迹)在相加过程中相互抵消,从而把信噪比提高 √N 倍(N 为叠加次数)。

2.2非生理伪迹

2.3如何减轻伪迹干扰效应

3.EEG预处理

导入数据:将生成数据导入到eeglab

定位电极:找到原始数据图对应的各个电极

剔除无用电极:剔除眼动电极等

重参考:参考活动电极,把已经采集到的信号再"换一把尺子"重新量一遍。

滤波:低通和高通

分段:把连续 EEG 切成以刺激事件为 0 ms 的小段,每段只保留"刺激前×× ms → 刺激后×× ms"的窗口,后续所有分析都以这个"小段"为单位。输出:一个 3 维矩阵-试次 × 电极 × 时间点(例如 120 trials × 64 ch × 1000 pts)

基线较正:

1.选一段"认为没有刺激影响"的预刺激区间,最常见的是 −200 ~ 0 ms;

2.对这区间内每个通道分别求平均:Bₗ = mean(xₗ(t), t∈[t₁, t₂])

3.把整个试次该通道的所有点都减去 Bₗ:xₗ′(t) = xₗ(t) − Bₗ

ICA:独立成分分析

3.0导入数据/定位电极/剔除无用电极

3.1滤波

纵轴是波的幅度

高通可能会导致波段失真(如图一峰谷明显不一样了)

低通会使波段更平滑(如图二)

3.2重参考

以某电极参考,就是活动电极相对于参考电极的电位差图,这就是参考导联(单极导联)

3.3分段和基线矫正

3.4坏段剔除(某个试次)

3.5坏导剔除/插值

坏导插值就是由其他周围导(电极)的加权平均值代替坏导(电极)

3.6独立成分分析(ICA)

4.事件相关电位ERPs

4.1如何获得事件相关电位

锁时:当同一刺激事件重复出现时,大脑对该事件的电反应(如电压变化、能量变化或相位变化)在每次试验中都大约在同一时刻出现

P2是一个在刺激后约 150-250毫秒 达到峰值的正波。它的"P"代表"Positive"(正性)

N2是一个在刺激后约 200-350毫秒 达到峰值的负波。它的"N"代表"Negative"(负性)

4.3如何呈现ERPs结果

相关推荐
毕设源码-郭学长5 小时前
【开题答辩全过程】以 基于python的二手房数据分析与可视化为例,包含答辩的问题和答案
开发语言·python·数据分析
2501_943695335 小时前
高职大数据与会计专业,考CDA证后能转纯数据分析岗吗?
大数据·数据挖掘·数据分析
爱吃泡芙的小白白10 小时前
环境数据多维关系探索利器:Pairs Plot 完全指南
python·信息可视化·数据分析·环境领域·pairs plot
莽撞的大地瓜10 小时前
洞察,始于一目了然——让舆情数据自己“说话”
大数据·网络·数据分析
AI职业加油站11 小时前
职业提升之路:我的大数据分析师学习与备考分享
大数据·人工智能·经验分享·学习·职场和发展·数据分析
AAD5558889920 小时前
YOLO11-EfficientRepBiPAN载重汽车轮胎热成像检测与分类_3
人工智能·分类·数据挖掘
fanstuck21 小时前
从0到提交,如何用 ChatGPT 全流程参与建模比赛的
大数据·数学建模·语言模型·chatgpt·数据挖掘
AAD555888991 天前
YOLOv8-MAN-Faster电容器缺陷检测:七类组件识别与分类系统
yolo·分类·数据挖掘
爱吃泡芙的小白白1 天前
环境数据可视化利器:Hexbin Chart 全解析与应用实战
信息可视化·数据挖掘·数据分析·环境领域·hexbin chart