【LeetCode 每日一题】1984. 学生分数的最小差值

Problem: 1984. 学生分数的最小差值

文章目录

  • 整体思路
      • [1. 核心问题](#1. 核心问题)
      • [2. 算法逻辑:排序 + 滑动窗口](#2. 算法逻辑:排序 + 滑动窗口)
  • 完整代码
  • 时空复杂度
      • [1. 时间复杂度: O ( N log ⁡ N ) O(N \log N) O(NlogN)](#1. 时间复杂度: O ( N log ⁡ N ) O(N \log N) O(NlogN))
      • [2. 空间复杂度: O ( log ⁡ N ) O(\log N) O(logN)](#2. 空间复杂度: O ( log ⁡ N ) O(\log N) O(logN))

整体思路

1. 核心问题

我们需要从数组 nums 中选出 k 个元素,使得这 k 个元素中最大值最小值的差(即极差)最小。

2. 算法逻辑:排序 + 滑动窗口

  • 为什么需要排序?

    • 如果数组是乱序的,任意选 k 个数,我们很难直观判断哪组数的差值最小。
    • 但是,如果我们把数组从小到大排序,那么数值相近的元素就会挨在一起。
    • 在排序后的数组中,为了让 max - min 最小,选取的 k 个数必然是连续 的。
      • 例如:在 [1, 4, 7, 9] 中选 3 个数。选 [1, 4, 7] 优于选 [1, 7, 9],因为后者跨度更大。
    • 因此,问题转化为:在排序后的数组中,找到一个长度为 k 的连续子数组(滑动窗口),使其末尾元素(该窗口最大值)与开头元素(该窗口最小值)的差值最小。
  • 具体步骤

    1. 排序 :使用 Arrays.sort(nums) 对数组进行升序排列。
    2. 滑动窗口遍历
      • 窗口大小固定为 k
      • 窗口的左边界为 i,右边界为 i + k - 1
      • 在该窗口内,最大值是 nums[right],最小值是 nums[left]
      • 计算差值 diff = nums[i + k - 1] - nums[i]
      • 遍历所有可能的窗口,维护全局最小的 diff

完整代码

java 复制代码
import java.util.Arrays;

class Solution {
    public int minimumDifference(int[] nums, int k) {
        // 1. 排序
        // 将数组按从小到大排序,这是使用滑动窗口策略的前提
        Arrays.sort(nums);
        
        // 初始化结果为整型最大值,用于后续找最小值
        int ans = Integer.MAX_VALUE;
        
        
        // 2. 滑动窗口遍历
        // i 代表当前窗口的起始位置(最小值位置)
        // i + k - 1 代表当前窗口的结束位置(最大值位置)
        // 循环条件 i < nums.length - k + 1 保证窗口右边界不越界
        for (int i = 0; i < nums.length - k + 1; i++) {
            // 计算当前窗口的极差:最大值 - 最小值
            // 由于已排序,最大值一定是窗口最右侧,最小值是窗口最左侧
            int currentDiff = nums[i + k - 1] - nums[i];
            
            // 更新全局最小差值
            ans = Math.min(ans, currentDiff);
        }
        
        return ans;
    }
}

时空复杂度

假设数组 nums 的长度为 N N N。

1. 时间复杂度: O ( N log ⁡ N ) O(N \log N) O(NlogN)

  • 排序Arrays.sort 使用双轴快速排序(对于基本类型),时间复杂度为 O ( N log ⁡ N ) O(N \log N) O(NlogN)。这是算法中耗时最主要的部分。
  • 遍历 :滑动窗口遍历只需一次线性扫描,时间复杂度为 O ( N ) O(N) O(N)(具体循环次数为 N − k + 1 N - k + 1 N−k+1)。
  • 总计 : O ( N log ⁡ N ) + O ( N ) = O ( N log ⁡ N ) O(N \log N) + O(N) = O(N \log N) O(NlogN)+O(N)=O(NlogN)。

2. 空间复杂度: O ( log ⁡ N ) O(\log N) O(logN)

  • 计算依据
    • 代码只使用了常数个额外变量 (ans, i)。
    • 但是,Java 的 Arrays.sort 对于基本数据类型 int[] 是原地排序,其内部递归调用栈需要消耗 O ( log ⁡ N ) O(\log N) O(logN) 的空间。
  • 结论 : O ( log ⁡ N ) O(\log N) O(logN)。
相关推荐
Aurora@Hui2 小时前
FactorAnalysisTool 因子分析工具
人工智能·算法·机器学习
wen__xvn2 小时前
基础算法集训第06天:计数排序
数据结构·算法·leetcode
(; ̄ェ ̄)。2 小时前
机器学校入门(十三)C4.5 决策树,CART决策树
算法·决策树·机器学习
Ll13045252982 小时前
Leetcode哈希表篇
算法·leetcode·散列表
独自破碎E2 小时前
【字节面试手撕】大数加法
java·算法
鱼跃鹰飞2 小时前
LeetCode热题100: 49.字母异位词分组
java·数据结构·算法·leetcode
myloveasuka2 小时前
3-8 译码器(正式型号74LS138、 74HC138、74HCT138 等))
笔记·算法·计算机组成原理·硬件
wen__xvn2 小时前
基础算法集训第17天:二分查找
算法·leetcode·职场和发展
myloveasuka2 小时前
MREQ̅ 信号
笔记·算法·计算机组成原理