<项目代码>yolo毛毛虫识别<目标检测>

项目代码下载链接

点击下载项目代码https://mp.csdn.net/mp_blog/creation/editor/157208975YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情请阅读博主写的博客

数据集简介https://blog.csdn.net/qq_53332949/article/details/157208582?spm=1011.2415.3001.5331

数据集下载链接:

点击下载数据集https://download.csdn.net/download/qq_53332949/92574222

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone

  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
  • Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
  • Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 F1_curve

3.5 confusion_matrix

3.6 confusion_matrix_normalized

3.7 识别效果图

相关推荐
喵手2 小时前
Python爬虫零基础入门【第九章:实战项目教学·第3节】通用清洗工具包:日期/金额/单位/空值(可复用)!
爬虫·python·python爬虫实战·python爬虫工程化实战·python爬虫零基础入门·通用清洗工具包·爬虫实战项目
b2077212 小时前
Flutter for OpenHarmony 身体健康状况记录App实战 - 体重趋势实现
python·flutter·harmonyos
丝斯20112 小时前
AI学习笔记整理(57)——大模型微调相关技术
人工智能·笔记·学习
沃达德软件2 小时前
人脸比对技术助力破案
人工智能·深度学习·神经网络·目标检测·机器学习·生成对抗网络·计算机视觉
喵手2 小时前
Python爬虫零基础入门【第九章:实战项目教学·第4节】质量报告自动生成:缺失率/重复率/异常值 TopN!
爬虫·python·爬虫实战·python爬虫工程化实战·零基础python爬虫教学·实战项目教学·质量报告自动生成
b2077212 小时前
Flutter for OpenHarmony 身体健康状况记录App实战 - 个人中心实现
android·java·python·flutter·harmonyos
喵手2 小时前
Python爬虫零基础入门【第九章:实战项目教学·第7节】增量采集:last_time / last_id 两种策略各做一遍!
爬虫·python·爬虫实战·python爬虫工程化实战·零基础python爬虫教学·增量采集·策略采集
副露のmagic2 小时前
Transformer架构
人工智能·深度学习·transformer
softshow10262 小时前
ros2_control
人工智能