树莓派上部署YOLOv5:从零实现实时目标检测

想在树莓派上玩转目标检测算法吗?本教程将手把手带你完成YOLOv5在树莓派上的完整部署流程,即使是嵌入式设备也能实现目标检测!


往期学习资料:

树莓派无线连接

使用Flask在本地调用树莓派摄像头

树莓派4B安装pytorch


在接下来的内容中,我们将使用树莓派4B(4GB内存版本)YOLOv5s(最小模型) 作为演示平台,但方法论同样适用于其他型号。让我们开始这段边缘AI之旅吧!

教程亮点:

✅ 详细的环境配置步骤,避坑指南

✅ 实用优化技巧,帧率提升200%+

✅ 完整代码示例,开箱即用

✅ 实际效果演示与性能评估

开始前的准备:

  • 树莓派4B及电源

  • 16GB以上TF卡

  • 摄像头模块(可选,可使用USB摄像头替代)

  • 基础的Linux命令行知识


接下来,我们将从系统环境搭建开始...


1.环境搭建

环境说明:

树莓派环境:

Linux raspberrypi 4.19.118-v7l+ #1311 SMP Mon Apr 27 14:26:42 BST 2020 armv7l GNU/Linux

python版本为3.7

torch 1.8.1

torchvision 0.9.1

matplotlib 3.4.3

numpy 1.21.4

opencv-python 4.4.0.44

pandas 1.3.5

Flask 1.0.2

Pillow 9.5.0

requests 2.21.0

scipy 1.7.3

seaborn 0.11.0

tqdm 4.67.1

在树莓派中搭建pytorch,我这里安装的是pytorch1.8.1,pytorch在树莓派中的安装可以参考我之前往期学习中的文章,里面有教程


2.代码运行

将项目(我这里用的yolov5是6.2版本的)拷贝到树莓派中,运行以下命令开启检测。代码可以去官网下载。

bash 复制代码
python3 detect.py --source data/images/bus.jpg --imgsz 320 --weights yolov5n.pt

出现以下内容表示检测成功:

相关推荐
笔画人生4 分钟前
# 探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer
灰灰勇闯IT8 分钟前
领域制胜——CANN 领域加速库(ascend-transformer-boost)的场景化优化
人工智能·深度学习·transformer
小白狮ww13 分钟前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
island131427 分钟前
CANN GE(图引擎)深度解析:计算图优化管线、内存静态规划与异构任务的 Stream 调度机制
开发语言·人工智能·深度学习·神经网络
艾莉丝努力练剑27 分钟前
深度学习视觉任务:如何基于ops-cv定制图像预处理流程
人工智能·深度学习
禁默33 分钟前
大模型推理的“氮气加速系统”:全景解读 Ascend Transformer Boost (ATB)
人工智能·深度学习·transformer·cann
User_芊芊君子34 分钟前
CANN大模型加速核心ops-transformer全面解析:Transformer架构算子的高性能实现与优化
人工智能·深度学习·transformer
island13141 小时前
CANN ops-nn 算子库深度解析:神经网络核心计算的硬件映射、Tiling 策略与算子融合机制
人工智能·深度学习·神经网络
心疼你的一切1 小时前
数字智人:CANN加速的实时数字人生成与交互
数据仓库·深度学习·aigc·交互·cann
chaser&upper1 小时前
击穿长文本极限:在 AtomGit 破译 CANN ops-nn 的注意力加速密码
人工智能·深度学习·神经网络