draw_tensor2psd.py——0126v2

import cv2

import numpy as np

import math

import os

import struct

from tqdm import tqdm

from glob import glob

PALETTE = np.random.randint(0, 255, [255, 3], dtype=np.uint32)

模型输入尺寸(W, H),用于把模型坐标缩放回原图

MODEL_IN_W = 608

MODEL_IN_H = 736

调试:同时输出"模型输入尺寸"和"交换W/H"的可视化

DEBUG_DRAW_MODEL_SIZE = True

DEBUG_DRAW_MODEL_SWAP = True

zh

imagespath = "/ai/DataSets/OD_FSD_zh/TI_test/rm/4/image/"

imagespath = "/ai/DataSets/OD_FSD_zh/TI_test/ppchen/DVR-20250804152834-2382380-PLR/image/"

savepath = "/ai/zhdata/multiyolov5_point_v2/test_images/out"

zh1 = 0

def readTensor(tensorFile):

global zh1

tensor = open(tensorFile,'rb')

infer_data = np.fromfile(tensor, dtype=np.int32)

print(infer_data.shape)

soltnum = int(len(infer_data) / 20)

im0 = cv2.imread(imagespath + tensorFile.split('/')[-1][:-8] + '.bmp')

if im0 is None:

print("读取图片失败:", tensorFile)

return

h0, w0 = im0.shape[:2]

sx = w0 / float(MODEL_IN_W)

sy = h0 / float(MODEL_IN_H)

point_all =[]

for i in range(soltnum):

point_dict1={}

raw_x1 = max(int(infer_data[20*i+6]), 0)

raw_y1 = max(int(infer_data[20*i+7]), 0)

raw_x2 = max(int(infer_data[20*i+8]), 0)

raw_y2 = max(int(infer_data[20*i+9]), 0)

raw_x3 = max(int(infer_data[20*i+10]), 0)

raw_y3 = max(int(infer_data[20*i+11]), 0)

raw_x4 = max(int(infer_data[20*i+12]), 0)

raw_y4 = max(int(infer_data[20*i+13]), 0)

x1 = max(int(raw_x1 * sx), 0)

y1 = max(int(raw_y1 * sy), 0)

x2 = max(int(raw_x2 * sx), 0)

y2 = max(int(raw_y2 * sy), 0)

x3 = max(int(raw_x3 * sx), 0)

y3 = max(int(raw_y3 * sy), 0)

x4 = max(int(raw_x4 * sx), 0)

y4 = max(int(raw_y4 * sy), 0)

zh = struct.unpack('!f',int(bin(infer_data[20*i+4])[2:],2).to_bytes(4,byteorder='big'))

point_dict1["conf"] = struct.unpack('!f',int(bin(infer_data[20*i+4])[2:],2).to_bytes(4,byteorder='big'))[0]

point_dict1["isOccupied"] = struct.unpack('!f',int(bin(infer_data[20*i+14])[2:],2).to_bytes(4,byteorder='big'))[0]

point_dict1["isVIP"] = struct.unpack('!f',int(bin(infer_data[20*i+15])[2:],2).to_bytes(4,byteorder='big'))[0]

point_dict1["iswoman"] = struct.unpack('!f',int(bin(infer_data[20*i+16])[2:],2).to_bytes(4,byteorder='big'))[0]

point_dict1["isdisabled"] = struct.unpack('!f',int(bin(infer_data[20*i+17])[2:],2).to_bytes(4,byteorder='big'))[0]

point_dict1["ischarging"] = struct.unpack('!f',int(bin(infer_data[20*i+18])[2:],2).to_bytes(4,byteorder='big'))[0]

point_dict1["step"] = struct.unpack('!f',int(bin(infer_data[20*i+19])[2:],2).to_bytes(4,byteorder='big'))[0]

point_dict1["name"] = str(struct.unpack('!f',int(bin(infer_data[20*i+5])[2:],2).to_bytes(4,byteorder='big'))[0])

point_dict1["delrule"] = 0

point_dict1["pointx"] = [x1,x2,x3,x4]

point_dict1["pointy"] = [y1,y2,y3,y4]

if DEBUG_DRAW_MODEL_SIZE:

point_dict1["raw_pointx"] = [raw_x1, raw_x2, raw_x3, raw_x4]

point_dict1["raw_pointy"] = [raw_y1, raw_y2, raw_y3, raw_y4]

if x3 > 1000 or x4 > 1000 or x1 > 1000 or x2 > 1000 or y3 > 1000 or y4 > 1000 or y1 > 1000 or y2 > 1000:

zh1 +=1

kk = struct.unpack('!f',int(bin(infer_data[20*i+17])[2:],2).to_bytes(4,byteorder='big'))[0]

print("数据解析错误"+ tensorFile + str(x3) + '--'+ str(zh1))

break

point_all.append(point_dict1)

end = len(point_all)

for i in range(len(point_all)):

if point_all[i]["delrule"] == 0:

for j in range(i+1,end):

#简单就是求入口顶点之间的距离

xi1 = point_all[i]['pointx'][0]

yi1 = point_all[i]['pointy'][0]

xi2 = point_all[i]['pointx'][1]

yi2 = point_all[i]['pointy'][1]

xj1 = point_all[j]['pointx'][0]

yj1 = point_all[j]['pointy'][0]

xj2 = point_all[j]['pointx'][1]

yj2 = point_all[j]['pointy'][1]

if (abs(xi1 - xj1) + abs(yi1 - yj1)) < 40 or (abs(xi2 - xj2) + abs(yi2 - yj2)) < 40:

point_all[j]["delrule"] = 1

for i in range(len(point_all)):

if point_all[i]["delrule"] == 0:

line1 = [point_all[i]['pointx'][0],point_all[i]['pointy'][0],point_all[i]['pointx'][3],point_all[i]['pointy'][3]]

line2 = [point_all[i]['pointx'][1],point_all[i]['pointy'][1],point_all[i]['pointx'][2],point_all[i]['pointy'][2]]

vec1 =[line1[2]-line1[0],line1[3]-line1[1]]

vec2 =[line2[2]-line2[0],line2[3]-line2[1]]

#计算向量的点积和模长

dot_product = vec1[0] * vec2[0] + vec1[1] * vec2[1]

m1 = math.sqrt(vec1[0]**2 + vec1[1]**2) + 0.000000000001

m2 = math.sqrt(vec2[0]**2 + vec2[1]**2) + 0.000000000001

val = dot_product/(m1 * m2)

if val > 1:

val = 1

if val < -1:

val = -15

radians = math.acos(val)

du = math.degrees(radians)

if du > 20:

point_all[i]["delrule"] = 2

if 1:

for point_i in point_all:

if point_i["delrule"] == 0:

if point_i["conf"] > 0.45:#0.45

print(point_i["conf"])

cv2.putText(im0, f'{point_i["conf"]:.3f}',

(point_i["pointx"][0] + 6, point_i["pointy"][0] + 6),

cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0),2) #置信度

cv2.putText(im0, point_i["name"],

(point_i["pointx"][0] + 6, point_i["pointy"][0] + 30),

cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0),2) #类别

if float(point_i["isOccupied"])> 0.1: #0.5

cv2.putText(im0, "Occ :" + f'{point_i["isOccupied"]:.3f}',

(point_i["pointx"][0] + 6, point_i["pointy"][0] + 54),

cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0),2) #是否被占用

if float(point_i["isVIP"]) > 0.5:

cv2.putText(im0, "VIP :" + f'{point_i["isVIP"]:.3f}',

(point_i["pointx"][0] + 6, point_i["pointy"][0] + 78),

cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0),2) #是否VIP车位

if float(point_i["iswoman"]) > 0.5:

cv2.putText(im0, "woman :" + f'{point_i["iswoman"]:.3f}',

(point_i["pointx"][0] + 6, point_i["pointy"][0] + 102),

cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0),2) #是否女性车位

if float(point_i["isdisabled"]) > 0.5:

cv2.putText(im0, "disab :" + f'{point_i["isdisabled"]:.3f}',

(point_i["pointx"][0] + 6, point_i["pointy"][0] + 126),

cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0),2) #是否残疾人车位

if float(point_i["ischarging"]) > 0.5:

cv2.putText(im0, "charg :" + f'{point_i["ischarging"]:.3f}',

(point_i["pointx"][0] + 6, point_i["pointy"][0] + 150),

cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0),2) #是否充电车位

if float(point_i["step"]) > 0.5:

cv2.putText(im0, "step :" + f'{point_i["step"]:.3f}',

(point_i["pointx"][0] + 6, point_i["pointy"][0] + 174),

cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0),2) #是否阶梯形车位

cv2.arrowedLine(im0, (point_i["pointx"][0], point_i["pointy"][0]),(point_i["pointx"][1], point_i["pointy"][1]), (0, 255, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][1], point_i["pointy"][1]),(point_i["pointx"][2], point_i["pointy"][2]), (255, 255, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][2], point_i["pointy"][2]),(point_i["pointx"][3], point_i["pointy"][3]), (255, 255, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][3], point_i["pointy"][3]),(point_i["pointx"][0], point_i["pointy"][0]), (255, 255, 0), 1, cv2.LINE_AA)

else:

cv2.putText(im0, f'{point_i["conf"]:.3f}',

(point_i["pointx"][0] + 6, point_i["pointy"][0] + 6),

cv2.FONT_HERSHEY_PLAIN, 2, (0, 0, 255),3)

cv2.arrowedLine(im0, (point_i["pointx"][0], point_i["pointy"][0]),(point_i["pointx"][1], point_i["pointy"][1]), (0, 0, 255), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][1], point_i["pointy"][1]),(point_i["pointx"][2], point_i["pointy"][2]), (0, 0, 255), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][2], point_i["pointy"][2]),(point_i["pointx"][3], point_i["pointy"][3]), (0, 0, 255), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][3], point_i["pointy"][3]),(point_i["pointx"][0], point_i["pointy"][0]), (0, 0, 255), 1, cv2.LINE_AA)

if point_i["delrule"] == 1:

cv2.putText(im0, f'{point_i["conf"]:.3f}',

(point_i["pointx"][0] + 6, point_i["pointy"][0] + 6),

cv2.FONT_HERSHEY_PLAIN, 2, (0, 0, 255),3)

cv2.arrowedLine(im0, (point_i["pointx"][0], point_i["pointy"][0]),(point_i["pointx"][1], point_i["pointy"][1]), (0, 0, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][1], point_i["pointy"][1]),(point_i["pointx"][2], point_i["pointy"][2]), (0, 0, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][2], point_i["pointy"][2]),(point_i["pointx"][3], point_i["pointy"][3]), (0, 0, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][3], point_i["pointy"][3]),(point_i["pointx"][0], point_i["pointy"][0]), (0, 0, 0), 1, cv2.LINE_AA)

if point_i["delrule"] == 2:

cv2.putText(im0, f'{point_i["conf"]:.3f}',

(point_i["pointx"][0] + 6, point_i["pointy"][0] + 6),

cv2.FONT_HERSHEY_PLAIN, 2, (0, 0, 255),3)

cv2.arrowedLine(im0, (point_i["pointx"][0], point_i["pointy"][0]),(point_i["pointx"][1], point_i["pointy"][1]), (0, 0, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][1], point_i["pointy"][1]),(point_i["pointx"][2], point_i["pointy"][2]), (0, 0, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][2], point_i["pointy"][2]),(point_i["pointx"][3], point_i["pointy"][3]), (0, 0, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im0, (point_i["pointx"][3], point_i["pointy"][3]),(point_i["pointx"][0], point_i["pointy"][0]), (0, 0, 0), 1, cv2.LINE_AA)

zh = "/ai/TopViewMul/4/psd_out/" + tensorFile.split('/')[-1][:-8] + '.bmp'

print(zh)

cv2.imwrite(zh, im0)

if DEBUG_DRAW_MODEL_SIZE:

im_model = cv2.resize(im0, (MODEL_IN_W, MODEL_IN_H))

for point_i in point_all:

if point_i.get("raw_pointx") is None:

continue

if point_i["delrule"] == 0 and point_i["conf"] > 0.45:

cv2.arrowedLine(im_model, (point_i["raw_pointx"][0], point_i["raw_pointy"][0]), (point_i["raw_pointx"][1], point_i["raw_pointy"][1]), (0, 255, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im_model, (point_i["raw_pointx"][1], point_i["raw_pointy"][1]), (point_i["raw_pointx"][2], point_i["raw_pointy"][2]), (255, 255, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im_model, (point_i["raw_pointx"][2], point_i["raw_pointy"][2]), (point_i["raw_pointx"][3], point_i["raw_pointy"][3]), (255, 255, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im_model, (point_i["raw_pointx"][3], point_i["raw_pointy"][3]), (point_i["raw_pointx"][0], point_i["raw_pointy"][0]), (255, 255, 0), 1, cv2.LINE_AA)

zh_model = "/ai/TopViewMul/4/psd_out/" + tensorFile.split('/')[-1][:-8] + '_model.bmp'

cv2.imwrite(zh_model, im_model)

if DEBUG_DRAW_MODEL_SWAP:

im_model_swap = cv2.resize(im0, (MODEL_IN_H, MODEL_IN_W))

for point_i in point_all:

if point_i.get("raw_pointx") is None:

continue

if point_i["delrule"] == 0 and point_i["conf"] > 0.45:

cv2.arrowedLine(im_model_swap, (point_i["raw_pointx"][0], point_i["raw_pointy"][0]), (point_i["raw_pointx"][1], point_i["raw_pointy"][1]), (0, 255, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im_model_swap, (point_i["raw_pointx"][1], point_i["raw_pointy"][1]), (point_i["raw_pointx"][2], point_i["raw_pointy"][2]), (255, 255, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im_model_swap, (point_i["raw_pointx"][2], point_i["raw_pointy"][2]), (point_i["raw_pointx"][3], point_i["raw_pointy"][3]), (255, 255, 0), 1, cv2.LINE_AA)

cv2.arrowedLine(im_model_swap, (point_i["raw_pointx"][3], point_i["raw_pointy"][3]), (point_i["raw_pointx"][0], point_i["raw_pointy"][0]), (255, 255, 0), 1, cv2.LINE_AA)

zh_model_swap = "/ai/TopViewMul/4/psd_out/" + tensorFile.split('/')[-1][:-8] + '_model_swap.bmp'

cv2.imwrite(zh_model_swap, im_model_swap)

zh

for binpath in tqdm(glob(os.path.join("/ai/DataSets/OD_FSD_zh/TI_test/rm/2/psd/",'*.bin'))):

readTensor(binpath)

num=0

for binpath in tqdm(glob(os.path.join("/ai/TopViewMul/4/out_480_544_2039/psd/",'*.bin'))):

readTensor(binpath)

num+=1

if num==100:

print('exit')

exit(0)

------------------------------------------------

版权声明:本文为CSDN博主「weixin_39544891」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/weixin_39544891/article/details/157259451

我已经在 draw_tensor2psd.py 里加了调试输出,现在会额外生成一张"模型输入尺寸坐标系"的可视化图,文件名是 *_model.bmp(跟原输出同目录)。这张图直接用原始坐标(未缩放)画在 608×736 的图上,用来判断"坐标本身是否正确"。

你现在遇到"仍不对",请按这个顺序排查:


1) 先看 _model.bmp 是否正确(最关键)

  • 如果 _model.bmp 是正确的

→ 说明解码坐标没问题,问题一定在"映射回原图"

→ 下一步只需要检查:

  • 原图尺寸是否真的是 480×544
  • MODEL_IN_W/H 是否确认为 608×736
  • 是否存在"用错了原图文件"的情况(图不是推理时用的那张)
  • 如果 _model.bmp 也不正确

→ 说明问题在下位机解码/尺寸理解

→ 需要继续检查 inWidth/inHeight 是否与真实模型输入一致

→ 或者 inWidth/inHeight 在下位机实际是"反过来的"(W/H 颠倒)


2) 确认下位机实际输入尺寸

在 main.c 的 readInput() 里,已经打印了:

Image Pre processing for image of size %d x %d

你要确认输出里是:

  • 原图:480×544
  • 模型输入:608×736

如果这里打印的原图不是 480×544,说明你画的原图和推理用的原图不是同一张。


3) 快速验证 W/H 是否颠倒

你可以临时改一下:

MODEL_IN_W = 736

MODEL_IN_H = 608

如果这样 _model.bmp 反而更对,说明 W/H 在某处被当成 H/W 了(常见于配置或导出阶段)。


4) 验证 raw 坐标范围

在 draw_tensor2psd.py 里随便打印一个框的 raw 坐标:

if i == 0:

print("raw:", raw_x1, raw_y1, raw_x2, raw_y2, raw_x3, raw_y3, raw_x4, raw_y4)

正常情况下,raw 坐标应该落在:

  • x ∈ [0, 608]
  • y ∈ [0, 736]

如果超出很多,解码逻辑或尺度还不对。


5) 请你回传这两张图

  • 原输出(缩放到原图)
  • _model.bmp 输出

我可以直接对比两张图判断问题在哪一层。


如果你愿意,我也可以把脚本再升级成:

一次输出三张图(原图、模型输入图、W/H 交换图),这样一眼就能判断错在哪里。

已升级:现在会输出 三张图,用于快速定位 W/H 是否颠倒或映射有误。

输出文件:

  • 原图坐标(已缩放回原图):*_psd.bmp(原逻辑)
  • 模型输入坐标:*_model.bmp(608×736)
  • 交换 W/H 坐标:*_model_swap.bmp(736×608)

只要对比 _model.bmp 和 _model_swap.bmp 哪张更像"正确结果",就能判断 W/H 是否被某个环节搞反。

你明天跑完后,把三张图的效果描述或截图发我,我帮你继续定位。

下面是明天白天你在公司可以独立完成的排查清单,按优先级从"最有效"到"次要"排,尽量让你一次跑完把关键证据拿全:


1) 产出三张图(你现在的脚本已支持)

  • *_psd.bmp(原图坐标)
  • *_model.bmp(模型输入坐标 608×736)
  • *_model_swap.bmp(交换 W/H)

目标:判断坐标本身是否正确、是否 W/H 被反、是否只是映射问题。


2) 打印输入/输出的真实尺寸(主证据)

在下位机运行时,记录以下日志(main.c 里已有):

  • 原图尺寸:Image Pre processing for image of size W x H
  • 网络输入尺寸:inWidth/inHeight
  • 输出张量尺寸:outWidth/outHeight/outNumChannels

目标:确认"实际运行尺寸"和"你设定的尺寸"一致。


3) 验证 raw 坐标范围(最直观)

在 draw_tensor2psd.py 里临时加一行,只打印第一个检测框的 raw 坐标:

if i == 0:

print("raw:", raw_x1, raw_y1, raw_x2, raw_y2, raw_x3, raw_y3, raw_x4, raw_y4)

预期:

x 在 0~608、y 在 0~736 之间(如果不是,说明解码或尺寸理解仍不对)。


4) 排除"图像不是同一张"的问题

确认:

  • draw_tensor2psd.py 读取的图片名

  • 下位机推理使用的图片名

必须一致,否则映射一定错。


5) 快速排除 W/H 颠倒

你可以临时设置:

MODEL_IN_W = 736

MODEL_IN_H = 608

跑一张图看 _model_swap.bmp 是否明显更对。


6) 校验 bin 输出结构是否正常

你的 bin 每个目标 20 个 int(fwrite(&num0, 4, 20, fp)),所以:

  • len(infer_data) % 20 == 0
  • soltnum = len(infer_data)/20 正常

如果不是 20 的倍数,说明输出结构与解析不一致。


7) 如果还是不准,拿到"对照组"

同一张图在 PC 端(上位机)推理可视化一次,和下位机结果对比。

  • 若上位机对,下位机错 → 说明下位机解码流程不一致
  • 若上位机也错 → 说明训练/导出或 anchor/输出格式不一致

8) 若有时间:固定一张样本做最小复现

  • 只跑一张图
  • 保存原图、bin、三张可视化图

这样第二天我们直接定位不用再复现场景。


你明天做完后,只要把这四样信息发我,就能继续快速定位:

  1. 三张图中哪张最正确(psd / model / swap)

  2. 下位机日志:原图尺寸 & inWidth/inHeight

  3. raw 坐标范围(打印一条)

  4. 你确认的"图片名是否一致"

这样我们大概率能一次定位到问题根因。

相关推荐
救救孩子把4 小时前
63-机器学习与大模型开发数学教程-5-10 最优化在机器学习中的典型应用(逻辑回归、SVM)
机器学习·支持向量机·逻辑回归
机器学习之心4 小时前
集群中继无人机应急通信双层多目标协同优化部署:融合无监督学习与凸优化及启发式算法的MATLAB代码
学习·无人机·启发式算法·双层多目标协同优化
开开心心_Every1 天前
手机PDF处理工具:支持格式转换与批注
游戏·微信·智能手机·pdf·逻辑回归·excel·语音识别
Brduino脑机接口技术答疑3 天前
脑机接口数据处理连载(九) 经典分类算法(一):支持向量机(SVM)数据建模——基于脑机接口(BCI)运动想象任务实战
支持向量机·分类·数据挖掘
开开心心_Every3 天前
时间自动校准工具:一键同步网络服务器时间
游戏·随机森林·微信·pdf·逻辑回归·excel·语音识别
(; ̄ェ ̄)。5 天前
机器学习入门(十一)逻辑回归,分类问题评估
机器学习·分类·逻辑回归
最低调的奢华5 天前
支持向量机和xgboost及卡方分箱解释
算法·机器学习·支持向量机
Lips6116 天前
第六章 支持向量机
算法·机器学习·支持向量机
BHXDML7 天前
第一章:线性回归& 逻辑回归
算法·逻辑回归·线性回归