耦合传输线分析学习笔记(九)对称耦合微带线S参数矩阵推导与应用(下)

本文参考梁昌洪老师简明微波、RF and Microwave Coupled-Line Circuits和洁仔爱吃冰淇淋的 从耦合微带线到近、远端串扰

1、上节回顾


图1:端口顺序定义,1输入,2耦合,3直通(这里2和3与常见定向耦合器不同,想按常见定向耦合器定义将结果交换2与3顺序即可),4隔离

上节我们推导出了对称耦合微带线S参数矩阵
S p = 1 2 [ Γ e + Γ o Γ e − Γ o T e + T o T e − T o Γ e − Γ o Γ e + Γ o T e − T o T e + T o T e + T o T e − T o Γ e + Γ o Γ e − Γ o T e − T o T e + T o Γ e − Γ o Γ e + Γ o ] \mathbf{S}_p = \frac{1}{2} \begin{bmatrix} \Gamma_e + \Gamma_o & \Gamma_e - \Gamma_o & T_e + T_o & T_e - T_o \\ \Gamma_e - \Gamma_o & \Gamma_e + \Gamma_o & T_e - T_o & T_e + T_o \\ T_e + T_o & T_e - T_o & \Gamma_e + \Gamma_o & \Gamma_e - \Gamma_o \\ T_e - T_o & T_e + T_o & \Gamma_e - \Gamma_o & \Gamma_e + \Gamma_o \end{bmatrix} Sp=21 Γe+ΓoΓe−ΓoTe+ToTe−ToΓe−ΓoΓe+ΓoTe−ToTe+ToTe+ToTe−ToΓe+ΓoΓe−ΓoTe−ToTe+ToΓe−ΓoΓe+Γo

其中各个参数
Γ e = j ( Z 0 e Z 0 − Z 0 Z 0 e ) sin ⁡ θ e 2 cos ⁡ θ e + j ( Z 0 e Z 0 + Z 0 Z 0 e ) sin ⁡ θ e , T e = 2 2 cos ⁡ θ e + j ( Z 0 e Z 0 + Z 0 Z 0 e ) sin ⁡ θ e \Gamma_e = \frac{j\left(\frac{Z_{0e}}{Z_{0}}-\frac{Z_{0}}{Z_{0e}}\right) \sin \theta_e}{2 \cos \theta_e + j\left(\frac{Z_{0e}}{Z_{0}}+\frac{Z_{0}}{Z_{0e}}\right) \sin \theta_e}, \quad T_e = \frac{2}{2 \cos \theta_e + j\left(\frac{Z_{0e}}{Z_{0}}+\frac{Z_{0}}{Z_{0e}}\right) \sin \theta_e} Γe=2cosθe+j(Z0Z0e+Z0eZ0)sinθej(Z0Z0e−Z0eZ0)sinθe,Te=2cosθe+j(Z0Z0e+Z0eZ0)sinθe2

Γ o = j ( Z 0 o Z 0 − Z 0 Z 0 o ) sin ⁡ θ o 2 cos ⁡ θ o + j ( Z 0 o Z 0 + Z 0 Z 0 o ) sin ⁡ θ o , T o = 2 2 cos ⁡ θ o + j ( Z 0 o Z 0 + Z 0 Z 0 o ) sin ⁡ θ o \Gamma_o = \frac{j\left(\frac{Z_{0o}}{Z_{0}}-\frac{Z_{0}}{Z_{0o}}\right) \sin \theta_o}{2 \cos \theta_o + j\left(\frac{Z_{0o}}{Z_{0}}+\frac{Z_{0}}{Z_{0o}}\right) \sin \theta_o}, \quad T_o = \frac{2}{2 \cos \theta_o + j\left(\frac{Z_{0o}}{Z_{0}}+\frac{Z_{0}}{Z_{0o}}\right) \sin \theta_o} Γo=2cosθo+j(Z0Z0o+Z0oZ0)sinθoj(Z0Z0o−Z0oZ0)sinθo,To=2cosθo+j(Z0Z0o+Z0oZ0)sinθo2
电长度(表示物理长度相对于波长的电气相位延迟) θ \theta θ定义为:

θ = β l = 2 π λ l \theta = \beta l = \frac{2\pi}{\lambda} l θ=βl=λ2πl

当偶模和奇模相速度不相等时,即电长度 θ e ≠ θ o \theta_e \neq \theta_o θe=θo,对四端口网络的匹配和隔离性能有影响。我们可以通过将反射系数 Γ e \Gamma_e Γe和 Γ o \Gamma_o Γo的表达式通分另分子实部虚部为零得到 S 11 = 0 S_{11}=0 S11=0的条件:

2、匹配条件( S 11 = 0 S_{11}=0 S11=0)

为方便计算令 R e = Z 0 e / Z 0 R_e = Z_{0e}/Z_0 Re=Z0e/Z0, R o = Z 0 o / Z 0 R_o = Z_{0o}/Z_0 Ro=Z0o/Z0,则:
Γ e = j ( R e 2 − 1 ) sin ⁡ θ e 2 R e cos ⁡ θ e + j ( R e 2 + 1 ) sin ⁡ θ e , Γ o = j ( R o 2 − 1 ) sin ⁡ θ o 2 R o cos ⁡ θ o + j ( R o 2 + 1 ) sin ⁡ θ o \Gamma_e = \frac{j(R_e^2 - 1) \sin \theta_e}{2R_e \cos \theta_e + j(R_e^2 + 1) \sin \theta_e}, \quad \Gamma_o = \frac{j(R_o^2 - 1) \sin \theta_o}{2R_o \cos \theta_o + j(R_o^2 + 1) \sin \theta_o} Γe=2Recosθe+j(Re2+1)sinθej(Re2−1)sinθe,Γo=2Rocosθo+j(Ro2+1)sinθoj(Ro2−1)sinθo

要求 S 11 = 1 2 ( Γ e + Γ o ) = 0 S_{11} = \frac{1}{2}(\Gamma_e + \Gamma_o) = 0 S11=21(Γe+Γo)=0,即 Γ e + Γ o = 0 \Gamma_e + \Gamma_o = 0 Γe+Γo=0。通分
Γ e + Γ o = 2 j [ R o ( R e 2 − 1 ) sin ⁡ θ e cos ⁡ θ o + R e ( R o 2 − 1 ) sin ⁡ θ o cos ⁡ θ e ] − 2 ( R e 2 R o 2 − 1 ) sin ⁡ θ e sin ⁡ θ o [ 2 R e cos ⁡ θ e + j ( R e 2 + 1 ) sin ⁡ θ e ] [ 2 R o cos ⁡ θ o + j ( R o 2 + 1 ) sin ⁡ θ o ] \Gamma_e + \Gamma_o = \frac{2j \left[ R_o (R_e^2 - 1) \sin \theta_e \cos \theta_o + R_e (R_o^2 - 1) \sin \theta_o \cos \theta_e \right] - 2 (R_e^2 R_o^2 - 1) \sin \theta_e \sin \theta_o}{\left[ 2R_e \cos \theta_e + j(R_e^2 + 1) \sin \theta_e \right] \left[ 2R_o \cos \theta_o + j(R_o^2 + 1) \sin \theta_o \right]} Γe+Γo=[2Recosθe+j(Re2+1)sinθe][2Rocosθo+j(Ro2+1)sinθo]2j[Ro(Re2−1)sinθecosθo+Re(Ro2−1)sinθocosθe]−2(Re2Ro2−1)sinθesinθo

分子可以记为
N = A + j B N = A + jB N=A+jB

其中
A = − 2 ( R e 2 R o 2 − 1 ) sin ⁡ θ e sin ⁡ θ o , B = 2 [ R o ( R e 2 − 1 ) sin ⁡ θ e cos ⁡ θ o + R e ( R o 2 − 1 ) sin ⁡ θ o cos ⁡ θ e ] . A = -2 (R_e^2 R_o^2 - 1) \sin \theta_e \sin \theta_o, \quad B = 2 \left[ R_o (R_e^2 - 1) \sin \theta_e \cos \theta_o + R_e (R_o^2 - 1) \sin \theta_o \cos \theta_e \right]. A=−2(Re2Ro2−1)sinθesinθo,B=2[Ro(Re2−1)sinθecosθo+Re(Ro2−1)sinθocosθe].

由复数为零需要实部虚部分别为零

A=0

sin ⁡ θ e sin ⁡ θ o ( R e 2 R o 2 − 1 ) = 0 \sin \theta_e \sin \theta_o (R_e^2 R_o^2 - 1) = 0 sinθesinθo(Re2Ro2−1)=0

在非平凡情况下( sin ⁡ θ e ≠ 0 \sin \theta_e \neq 0 sinθe=0且 sin ⁡ θ o ≠ 0 \sin \theta_o \neq 0 sinθo=0),需满足:
R e R o = 1 ⇒ Z 0 = Z 0 e Z 0 o R_e R_o = 1 \quad \Rightarrow \quad Z_0 = \sqrt{Z_{0e} Z_{0o}} ReRo=1⇒Z0=Z0eZ0o

B=0 (在满足 Z 0 = Z 0 e Z 0 o Z_0 = \sqrt{Z_{0e} Z_{0o}} Z0=Z0eZ0o 后):

B = 2 [ R o ( R e 2 − 1 ) sin ⁡ θ e cos ⁡ θ o + R e ( R o 2 − 1 ) sin ⁡ θ o cos ⁡ θ e ] B = 2 \left[ R_o (R_e^2 - 1) \sin \theta_e \cos \theta_o + R_e (R_o^2 - 1) \sin \theta_o \cos \theta_e \right] B=2[Ro(Re2−1)sinθecosθo+Re(Ro2−1)sinθocosθe]

R o ( R e 2 − 1 ) = R e 2 − 1 R e R_o (R_e^2 - 1) = \frac{R_e^2 - 1}{R_e} Ro(Re2−1)=ReRe2−1

R e ( R o 2 − 1 ) = R e ⋅ 1 − R e 2 R e 2 = 1 − R e 2 R e = − R e 2 − 1 R e R_e (R_o^2 - 1) = R_e \cdot \frac{1 - R_e^2}{R_e^2} = \frac{1 - R_e^2}{R_e} = -\frac{R_e^2 - 1}{R_e} Re(Ro2−1)=Re⋅Re21−Re2=Re1−Re2=−ReRe2−1

代入 B:
B = 2 [ R e 2 − 1 R e sin ⁡ θ e cos ⁡ θ o − R e 2 − 1 R e sin ⁡ θ o cos ⁡ θ e ] = 2 ⋅ R e 2 − 1 R e ( sin ⁡ θ e cos ⁡ θ o − sin ⁡ θ o cos ⁡ θ e ) \begin{aligned} B &= 2 \left[ \frac{R_e^2 - 1}{R_e} \sin \theta_e \cos \theta_o - \frac{R_e^2 - 1}{R_e} \sin \theta_o \cos \theta_e \right] \\ &= 2 \cdot \frac{R_e^2 - 1}{R_e} \left( \sin \theta_e \cos \theta_o - \sin \theta_o \cos \theta_e \right) \end{aligned} B=2[ReRe2−1sinθecosθo−ReRe2−1sinθocosθe]=2⋅ReRe2−1(sinθecosθo−sinθocosθe)

利用三角恒等式
sin ⁡ θ e cos ⁡ θ o − sin ⁡ θ o cos ⁡ θ e = sin ⁡ ( θ e − θ o ) \sin \theta_e \cos \theta_o - \sin \theta_o \cos \theta_e = \sin(\theta_e - \theta_o) sinθecosθo−sinθocosθe=sin(θe−θo)

因此
B = 2 ⋅ R e 2 − 1 R e sin ⁡ ( θ e − θ o ) = 0 B = 2 \cdot \frac{R_e^2 - 1}{R_e} \sin(\theta_e - \theta_o)=0 B=2⋅ReRe2−1sin(θe−θo)=0

当耦合非零时( Z 0 e ≠ Z 0 Z_{0e} \neq Z_0 Z0e=Z0),有 R e ≠ 1 R_e \neq 1 Re=1,所以 R e 2 − 1 R e ≠ 0 \dfrac{R_e^2 - 1}{R_e} \neq 0 ReRe2−1=0。因此必须满足:
sin ⁡ ( θ e − θ o ) = 0 \sin(\theta_e - \theta_o) = 0 sin(θe−θo)=0


θ e − θ o = n π , n ∈ Z \theta_e - \theta_o = n\pi, \quad n \in \mathbb{Z} θe−θo=nπ,n∈Z

或写作
θ e = θ o + n π \theta_e = \theta_o + n\pi θe=θo+nπ

通常耦合微带线,电长度 θ e \theta_e θe和 θ o \theta_o θo小于 π \pi π(物理长度小于半个波长 ),且均为正数。因此要使上述等式成立取 n = 0 n = 0 n=0,得到:
θ e = θ o \theta_e = \theta_o θe=θo
2 R e 2 − 1 R e sin ⁡ ( θ e − θ o ) = 0 2 \frac{R_e^2 - 1}{R_e} \sin(\theta_e - \theta_o) = 0 2ReRe2−1sin(θe−θo)=0

若 R e ≠ 1 R_e \neq 1 Re=1(即 Z 0 e ≠ Z 0 Z_{0e} \neq Z_0 Z0e=Z0,耦合非零),则需:
sin ⁡ ( θ e − θ o ) = 0 ⇒ θ e = θ o + n π \sin(\theta_e - \theta_o) = 0 \quad \Rightarrow \quad \theta_e = \theta_o + n\pi sin(θe−θo)=0⇒θe=θo+nπ

对于通常的耦合线长度(电长度小于半波长),取 n = 0 n=0 n=0,即 θ e = θ o \theta_e = \theta_o θe=θo。

3、隔离条件( S 41 = 0 S_{41}=0 S41=0)

对于对称耦合微带线,端口4到端口1的隔离度 S 41 S_{41} S41 由散射矩阵给出:
S 41 = 1 2 ( T e − T o ) S_{41} = \frac{1}{2}(T_e - T_o) S41=21(Te−To)

因此, S 41 = 0 S_{41} = 0 S41=0的条件为 T e = T o T_e = T_o Te=To。代入 T e T_e Te 和 T o T_o To 的表达式并取倒数,得到:
2 cos ⁡ θ e + j ( Z 0 e Z 0 + Z 0 Z 0 e ) sin ⁡ θ e = 2 cos ⁡ θ o + j ( Z 0 o Z 0 + Z 0 Z 0 o ) sin ⁡ θ o 2 \cos \theta_e + j\left(\frac{Z_{0e}}{Z_0} + \frac{Z_0}{Z_{0e}}\right) \sin \theta_e = 2 \cos \theta_o + j\left(\frac{Z_{0o}}{Z_0} + \frac{Z_0}{Z_{0o}}\right) \sin \theta_o 2cosθe+j(Z0Z0e+Z0eZ0)sinθe=2cosθo+j(Z0Z0o+Z0oZ0)sinθo

令实部和虚部分别相等:
cos ⁡ θ e = cos ⁡ θ o 和 ( Z 0 e Z 0 + Z 0 Z 0 e ) sin ⁡ θ e = ( Z 0 o Z 0 + Z 0 Z 0 o ) sin ⁡ θ o \cos \theta_e = \cos \theta_o \quad \text{和} \quad \left(\frac{Z_{0e}}{Z_0} + \frac{Z_0}{Z_{0e}}\right) \sin \theta_e = \left(\frac{Z_{0o}}{Z_0} + \frac{Z_0}{Z_{0o}}\right) \sin \theta_o cosθe=cosθo和(Z0Z0e+Z0eZ0)sinθe=(Z0Z0o+Z0oZ0)sinθo

由 cos ⁡ θ e = cos ⁡ θ o \cos \theta_e = \cos \theta_o cosθe=cosθo,在电长度通常小于 π \pi π 且为正的情况下,得到:
θ e = θ o \theta_e = \theta_o θe=θo

即偶模与奇模电长度相等,对应相速度相等 v p e = v p o v_{pe} = v_{po} vpe=vpo。

将 θ e = θ o = θ \theta_e = \theta_o = \theta θe=θo=θ 代入虚部方程,若 sin ⁡ θ ≠ 0 \sin \theta \neq 0 sinθ=0,可约去 sin ⁡ θ \sin \theta sinθ:
Z 0 e Z 0 + Z 0 Z 0 e = Z 0 o Z 0 + Z 0 Z 0 o \frac{Z_{0e}}{Z_0} + \frac{Z_0}{Z_{0e}} = \frac{Z_{0o}}{Z_0} + \frac{Z_0}{Z_{0o}} Z0Z0e+Z0eZ0=Z0Z0o+Z0oZ0

整理得:
Z 0 e + Z 0 2 Z 0 e = Z 0 o + Z 0 2 Z 0 o Z_{0e} + \frac{Z_0^2}{Z_{0e}} = Z_{0o} + \frac{Z_0^2}{Z_{0o}} Z0e+Z0eZ02=Z0o+Z0oZ02

假设 Z 0 e ≠ Z 0 o Z_{0e} \neq Z_{0o} Z0e=Z0o(耦合非零),化简后得到:
Z 0 = Z 0 e Z 0 o Z_0 = \sqrt{Z_{0e} Z_{0o}} Z0=Z0eZ0o

因此,当奇偶模相速度相等且奇偶模阻抗和参考阻抗满足几何平均值关系时,对称耦合微带线可实现理想匹配和隔离条件。

**若相速不相等( θ e ≠ θ o \theta_e \neq \theta_o θe=θo),即使满足阻抗条件,反射系数也无法完全抵消,导致端口失配( S 11 ≠ 0 S_{11} \neq 0 S11=0)。类似地,隔离度 S 41 = 0 S_{41}=0 S41=0的条件也会被破坏。**需通过结构优化(如介质覆盖、多节耦合线)等方法去补偿奇偶模相速度不同的影响,实现较为理想的匹配和隔离。

4、满足匹配&隔离条件情况下的简化耦合线S参数矩阵

S p = 1 2 [ Γ e + Γ o Γ e − Γ o T e + T o T e − T o Γ e − Γ o Γ e + Γ o T e − T o T e + T o T e + T o T e − T o Γ e + Γ o Γ e − Γ o T e − T o T e + T o Γ e − Γ o Γ e + Γ o ] \mathbf{S}_p = \frac{1}{2} \begin{bmatrix} \Gamma_e + \Gamma_o & \Gamma_e - \Gamma_o & T_e + T_o & T_e - T_o \\ \Gamma_e - \Gamma_o & \Gamma_e + \Gamma_o & T_e - T_o & T_e + T_o \\ T_e + T_o & T_e - T_o & \Gamma_e + \Gamma_o & \Gamma_e - \Gamma_o \\ T_e - T_o & T_e + T_o & \Gamma_e - \Gamma_o & \Gamma_e + \Gamma_o \end{bmatrix} Sp=21 Γe+ΓoΓe−ΓoTe+ToTe−ToΓe−ΓoΓe+ΓoTe−ToTe+ToTe+ToTe−ToΓe+ΓoΓe−ΓoTe−ToTe+ToΓe−ΓoΓe+Γo

容易根据匹配和隔离条件与对称性,得到主对角线和次对角线元素均为零
S p = 1 2 [ 0 Γ e − Γ o T e + T o 0 Γ e − Γ o 0 0 T e + T o T e + T o 0 0 Γ e − Γ o 0 T e + T o Γ e − Γ o 0 ] \mathbf{S}_p = \frac{1}{2} \begin{bmatrix} 0& \Gamma_e - \Gamma_o & T_e + T_o & 0 \\ \Gamma_e - \Gamma_o & 0 & 0 & T_e + T_o \\ T_e + T_o & 0 & 0 & \Gamma_e - \Gamma_o \\ 0 & T_e + T_o & \Gamma_e - \Gamma_o &0 \end{bmatrix} Sp=21 0Γe−ΓoTe+To0Γe−Γo00Te+ToTe+To00Γe−Γo0Te+ToΓe−Γo0

根据匹配条件有 θ e = θ o = θ = β l \theta_e=\theta_o=\theta=\beta l θe=θo=θ=βl,下面计算S21:
S 21 = Γ e − Γ o 2 = 1 2 [ j ( Z 0 e Z 0 − Z 0 Z 0 e ) sin ⁡ β l 2 cos ⁡ β l + j ( Z 0 e Z 0 + Z 0 Z 0 e ) sin ⁡ β l − j ( Z 0 o Z 0 − Z 0 Z 0 o ) sin ⁡ β l 2 cos ⁡ β l + j ( Z 0 o Z 0 + Z 0 Z 0 o ) sin ⁡ β l ] = j sin ⁡ β l 2 { ( Z 0 e Z 0 − Z 0 Z 0 e ) ( 2 cos ⁡ β l + j ( Z 0 o Z 0 + Z 0 Z 0 o ) sin ⁡ β l ) − ( Z 0 o Z 0 − Z 0 Z 0 o ) ( 2 cos ⁡ β l + j ( Z 0 e Z 0 + Z 0 Z 0 e ) sin ⁡ β l ) } [ 2 cos ⁡ β l + j sin ⁡ β l ( Z 0 o Z 0 e + Z 0 e Z 0 o ) ] 2 = j sin ⁡ β l 2 { 2 cos ⁡ β l ( Z 0 e Z 0 − Z 0 Z 0 e − Z 0 o Z 0 + Z 0 Z 0 o ) + j sin ⁡ β l [ ( Z 0 e Z 0 − Z 0 Z 0 e ) ( Z 0 o Z 0 + Z 0 Z 0 o ) − ( Z 0 o Z 0 − Z 0 Z 0 o ) ( Z 0 e Z 0 + Z 0 Z 0 e ) ] } [ 2 cos ⁡ β l + j sin ⁡ β l ( Z 0 o Z 0 e + Z 0 e Z 0 o ) ] 2 = j sin ⁡ β l 2 { 4 cos ⁡ β l Z 0 e − Z 0 o Z 0 + j 2 sin ⁡ β l [ ( Z 0 e + Z 0 o ) ( Z 0 e − Z 0 o ) Z 0 2 ] } [ 2 cos ⁡ β l + j sin ⁡ β l ( Z 0 o Z 0 e + Z 0 e Z 0 o ) ] 2 = j sin ⁡ β l 2 Z 0 e − Z 0 o Z 0 { 2 cos ⁡ β l + j sin ⁡ β l Z 0 e + Z 0 o Z 0 } [ 2 cos ⁡ β l + j sin ⁡ β l ( Z 0 o Z 0 e + Z 0 e Z 0 o ) ] 2 = j sin ⁡ β l 2 Z 0 e − Z 0 o Z 0 { 2 cos ⁡ β l + j sin ⁡ β l Z 0 o + Z 0 e Z 0 } ( 2 cos ⁡ β l + j sin ⁡ β l Z 0 o + Z 0 e Z 0 ) 2 = j sin ⁡ β l Z 0 e − Z 0 o Z 0 2 cos ⁡ β l + j sin ⁡ β l Z 0 e + Z 0 o Z 0 = j sin ⁡ β l Z 0 e − Z 0 o Z 0 e + Z 0 o j sin ⁡ β l + 2 Z 0 Z 0 e + Z 0 o cos ⁡ β l \begin{align*} S_{21} & = \frac{\Gamma_{e} -\Gamma_{o}}{2} \\ & = \frac{1}{2} \left[ \frac{j\left( \frac{Z_{0e}}{Z_0} - \frac{Z_0}{Z_{0e}} \right) \sin \beta l}{2 \cos \beta l + j\left( \frac{Z_{0e}}{Z_0} + \frac{Z_0}{Z_{0e}} \right) \sin \beta l} - \frac{j\left( \frac{Z_{0o}}{Z_0} - \frac{Z_0}{Z_{0o}} \right) \sin \beta l}{2 \cos \beta l + j\left( \frac{Z_{0o}}{Z_0} + \frac{Z_0}{Z_{0o}} \right) \sin \beta l} \right] \\ & = \frac{ \frac{j \sin \beta l}{2} \left\{ \left( \frac{Z_{0e}}{Z_0} - \frac{Z_0}{Z_{0e}} \right) \left( 2 \cos \beta l + j\left( \frac{Z_{0o}}{Z_0} + \frac{Z_0}{Z_{0o}} \right) \sin \beta l \right) - \left( \frac{Z_{0o}}{Z_0} - \frac{Z_0}{Z_{0o}} \right) \left( 2 \cos \beta l + j\left( \frac{Z_{0e}}{Z_0} + \frac{Z_0}{Z_{0e}} \right) \sin \beta l \right) \right\} }{ \left[ 2 \cos \beta l + j \sin \beta l \left( \sqrt{ \frac{Z_{0o}}{Z_{0e}} } + \sqrt{ \frac{Z_{0e}}{Z_{0o}} } \right) \right]^2 } \\ & = \frac{ \frac{j \sin \beta l}{2} \left\{ 2 \cos \beta l \left( \frac{Z_{0e}}{Z_0} - \frac{Z_0}{Z_{0e}} - \frac{Z_{0o}}{Z_0} + \frac{Z_0}{Z_{0o}} \right) + j \sin \beta l \left[ \left( \frac{Z_{0e}}{Z_0} - \frac{Z_0}{Z_{0e}} \right) \left( \frac{Z_{0o}}{Z_0} + \frac{Z_0}{Z_{0o}} \right) - \left( \frac{Z_{0o}}{Z_0} - \frac{Z_0}{Z_{0o}} \right) \left( \frac{Z_{0e}}{Z_0} + \frac{Z_0}{Z_{0e}} \right) \right] \right\} }{ \left[ 2 \cos \beta l + j \sin \beta l \left( \sqrt{ \frac{Z_{0o}}{Z_{0e}} } + \sqrt{ \frac{Z_{0e}}{Z_{0o}} } \right) \right]^2 } \\ & = \frac{ \frac{j \sin \beta l}{2} \left\{ 4 \cos \beta l \frac{Z_{0e} - Z_{0o}}{Z_0} + j 2 \sin \beta l \left[ \frac{ (Z_{0e} + Z_{0o}) (Z_{0e} - Z_{0o}) }{Z_0^2} \right] \right\} }{ \left[ 2 \cos \beta l + j \sin \beta l \left( \sqrt{ \frac{Z_{0o}}{Z_{0e}} } + \sqrt{ \frac{Z_{0e}}{Z_{0o}} } \right) \right]^2 } \\ & = \frac{ \frac{j \sin \beta l}{2} \frac{Z_{0e} - Z_{0o}}{Z_0} \left\{ 2 \cos \beta l + j \sin \beta l \frac{Z_{0e} + Z_{0o}}{Z_0} \right\} }{ \left[ 2 \cos \beta l + j \sin \beta l \left( \sqrt{ \frac{Z_{0o}}{Z_{0e}} } + \sqrt{ \frac{Z_{0e}}{Z_{0o}} } \right) \right]^2 } \\ & = \frac{ \frac{j \sin \beta l}{2} \frac{Z_{0e} - Z_{0o}}{Z_0} \left\{ 2 \cos \beta l + j \sin \beta l \frac{Z_{0o} + Z_{0e}}{Z_0} \right\} }{ \left( 2 \cos \beta l + j \sin \beta l \frac{Z_{0o} + Z_{0e}}{Z_0} \right)^2 } \\ & = \frac{ j \sin \beta l \frac{Z_{0e} - Z_{0o}}{Z_0} }{ 2 \cos \beta l + j \sin \beta l \frac{Z_{0e} + Z_{0o}}{Z_0} } = \frac{ j \sin \beta l \frac{Z_{0e} - Z_{0o}}{Z_{0e}+ Z_{0o}} }{ j \sin \beta l + \frac{2 Z_0}{Z_{0e} + Z_{0o}} \cos \beta l } \end{align*} S21=2Γe−Γo=21 2cosβl+j(Z0Z0e+Z0eZ0)sinβlj(Z0Z0e−Z0eZ0)sinβl−2cosβl+j(Z0Z0o+Z0oZ0)sinβlj(Z0Z0o−Z0oZ0)sinβl =[2cosβl+jsinβl(Z0eZ0o +Z0oZ0e )]22jsinβl{(Z0Z0e−Z0eZ0)(2cosβl+j(Z0Z0o+Z0oZ0)sinβl)−(Z0Z0o−Z0oZ0)(2cosβl+j(Z0Z0e+Z0eZ0)sinβl)}=[2cosβl+jsinβl(Z0eZ0o +Z0oZ0e )]22jsinβl{2cosβl(Z0Z0e−Z0eZ0−Z0Z0o+Z0oZ0)+jsinβl[(Z0Z0e−Z0eZ0)(Z0Z0o+Z0oZ0)−(Z0Z0o−Z0oZ0)(Z0Z0e+Z0eZ0)]}=[2cosβl+jsinβl(Z0eZ0o +Z0oZ0e )]22jsinβl{4cosβlZ0Z0e−Z0o+j2sinβl[Z02(Z0e+Z0o)(Z0e−Z0o)]}=[2cosβl+jsinβl(Z0eZ0o +Z0oZ0e )]22jsinβlZ0Z0e−Z0o{2cosβl+jsinβlZ0Z0e+Z0o}=(2cosβl+jsinβlZ0Z0o+Z0e)22jsinβlZ0Z0e−Z0o{2cosβl+jsinβlZ0Z0o+Z0e}=2cosβl+jsinβlZ0Z0e+Z0ojsinβlZ0Z0e−Z0o=jsinβl+Z0e+Z0o2Z0cosβljsinβlZ0e+Z0oZ0e−Z0o

定义耦合系数 k k k

k = Z 0 e − Z 0 o Z 0 e + Z 0 o k=\frac{Z_{0e} - Z_{0o}}{Z_{0e} + Z_{0o}} k=Z0e+Z0oZ0e−Z0o

根据 Z 0 = Z 0 e Z 0 o Z_0 = \sqrt{Z_{0e} Z_{0o}} Z0=Z0eZ0o
1 − k 2 = 4 Z 0 e Z 0 o ( Z 0 e + Z 0 o ) 2 = 2 Z 0 e Z 0 o Z 0 e + Z 0 o = 2 Z 0 Z 0 e + Z 0 o \sqrt{1 - k^2}=\sqrt{ \frac{4Z_{0e}Z_{0o}}{(Z_{0e} + Z_{0o})^2}} = \frac{2\sqrt{Z_{0e}Z_{0o}}}{Z_{0e} + Z_{0o}} = \frac{2Z_0}{Z_{0e} + Z_{0o}} 1−k2 =(Z0e+Z0o)24Z0eZ0o =Z0e+Z0o2Z0eZ0o =Z0e+Z0o2Z0

把k带入 S 21 S_{21} S21表达式可得
S 21 = j k sin ⁡ β l j sin ⁡ β l + cos ⁡ β l 1 − k 2 S_{21}= \frac{ j k \sin\beta l }{ j \sin \beta l +\cos \beta l \sqrt{1 - k^2} } S21=jsinβl+cosβl1−k2 jksinβl

观察S参数矩阵或者利用对称性易得 S 21 = S 12 = S 43 = S 34 S_{21}=S_{12}=S_{43}=S_{34} S21=S12=S43=S34

同理对于直通端口我们有
S 31 = T e + T o 2 = 1 2 cos ⁡ β l + j ( Z 00 Z 0 + Z 0 Z 00 ) sin ⁡ β l + 1 2 cos ⁡ β l + j ( Z 0 e Z 0 + Z 0 Z 0 e ) sin ⁡ β l = 2 cos ⁡ β l + j ( Z 00 Z 0 + Z 0 Z 00 ) sin ⁡ β l + 2 cos ⁡ β l + j ( Z 0 e Z 0 + Z 0 Z 0 e ) sin ⁡ β l [ 2 cos ⁡ β l + j ( Z 00 Z 0 + Z 0 Z 00 ) sin ⁡ β l ] × [ 2 cos ⁡ β l + j ( Z 0 e Z 0 + Z 0 Z 0 e ) sin ⁡ β l ] = 2 × [ 2 cos ⁡ β l + j sin ⁡ β l ( Z 00 Z 0 e + Z 0 e Z 00 ) ] 4 cos ⁡ 2 β l + 4 j cos ⁡ β l sin ⁡ β l ( Z 00 Z 0 e + Z 00 Z 0 e ) − ( Z 00 Z 0 + Z 0 Z 00 ) ( Z 0 e Z 0 + Z 0 Z 0 e ) sin ⁡ 2 β l = 2 × [ 2 cos ⁡ β l + j sin ⁡ β l ( Z 00 Z 0 e + Z 0 e Z 00 ) ] 4 cos ⁡ 2 β l + 4 j cos ⁡ β l sin ⁡ β l ( Z 00 Z 0 e + Z 00 Z 0 e ) − ( 2 + Z 00 Z 0 e + Z 0 e Z 00 ) sin ⁡ 2 β l = 2 × [ 2 cos ⁡ β l + j sin ⁡ β l ( Z 00 Z 0 e + Z 0 e Z 00 ) ] [ 2 cos ⁡ β l + j sin ⁡ β l ( Z 00 Z 0 e + Z 0 e Z 00 ) ] 2 = 2 2 cos ⁡ β l + j sin ⁡ β l ( Z 00 Z 0 e + Z 0 e Z 00 ) = 2 2 cos ⁡ β l + j sin ⁡ β l ⋅ Z 0 e + Z 00 Z 0 = 1 cos ⁡ β l + j sin ⁡ β l ⋅ 1 1 − k 2 \begin{align*} S_{31} &= \frac{T_{e} + T_{o}}{2} \\ &= \frac{1}{2\cos\beta l + j\left(\frac{Z_{00}}{Z_0} + \frac{Z_0}{Z_{00}}\right)\sin\beta l} + \frac{1}{2\cos\beta l + j\left(\frac{Z_{0e}}{Z_0} + \frac{Z_0}{Z_{0e}}\right)\sin\beta l} \\ &= \frac{2\cos\beta l + j\left(\frac{Z_{00}}{Z_0} + \frac{Z_0}{Z_{00}}\right)\sin\beta l + 2\cos\beta l + j\left(\frac{Z_{0e}}{Z_0} + \frac{Z_0}{Z_{0e}}\right)\sin\beta l}{\left[2\cos\beta l + j\left(\frac{Z_{00}}{Z_0} + \frac{Z_0}{Z_{00}}\right)\sin\beta l\right] \times \left[2\cos\beta l + j\left(\frac{Z_{0e}}{Z_0} + \frac{Z_0}{Z_{0e}}\right)\sin\beta l\right]} \\ &= \frac{2 \times \left[2\cos\beta l + j\sin\beta l\left(\sqrt{\frac{Z_{00}}{Z_{0e}}} + \sqrt{\frac{Z_{0e}}{Z_{00}}}\right)\right]}{4\cos^2\beta l + 4j\cos\beta l\sin\beta l\left(\sqrt{\frac{Z_{00}}{Z_{0e}}} + \sqrt{\frac{Z_{00}}{Z_{0e}}}\right) - \left(\frac{Z_{00}}{Z_0} + \frac{Z_0}{Z_{00}}\right)\left(\frac{Z_{0e}}{Z_0} + \frac{Z_0}{Z_{0e}}\right)\sin^2\beta l} \\ &= \frac{2 \times \left[2\cos\beta l + j\sin\beta l\left(\sqrt{\frac{Z_{00}}{Z_{0e}}} + \sqrt{\frac{Z_{0e}}{Z_{00}}}\right)\right]}{4\cos^2\beta l + 4j\cos\beta l\sin\beta l\left(\sqrt{\frac{Z_{00}}{Z_{0e}}} + \sqrt{\frac{Z_{00}}{Z_{0e}}}\right) - \left(2 + \frac{Z_{00}}{Z_{0e}} + \frac{Z_{0e}}{Z_{00}}\right)\sin^2\beta l} \\ &= \frac{2 \times \left[2\cos\beta l + j\sin\beta l\left(\sqrt{\frac{Z_{00}}{Z_{0e}}} + \sqrt{\frac{Z_{0e}}{Z_{00}}}\right)\right]}{\left[2\cos\beta l + j\sin\beta l\left(\sqrt{\frac{Z_{00}}{Z_{0e}}} + \sqrt{\frac{Z_{0e}}{Z_{00}}}\right)\right]^2} \\ &= \frac{2}{2\cos\beta l + j\sin\beta l\left(\sqrt{\frac{Z_{00}}{Z_{0e}}} + \sqrt{\frac{Z_{0e}}{Z_{00}}}\right)} \\ &= \frac{2}{2\cos\beta l + j\sin\beta l \cdot \frac{Z_{0e} + Z_{00}}{Z_0}}=\frac{1}{\cos\beta l + j\sin\beta l \cdot \dfrac{1}{\sqrt{1 - k^2}}} \end{align*} S31=2Te+To=2cosβl+j(Z0Z00+Z00Z0)sinβl1+2cosβl+j(Z0Z0e+Z0eZ0)sinβl1=[2cosβl+j(Z0Z00+Z00Z0)sinβl]×[2cosβl+j(Z0Z0e+Z0eZ0)sinβl]2cosβl+j(Z0Z00+Z00Z0)sinβl+2cosβl+j(Z0Z0e+Z0eZ0)sinβl=4cos2βl+4jcosβlsinβl(Z0eZ00 +Z0eZ00 )−(Z0Z00+Z00Z0)(Z0Z0e+Z0eZ0)sin2βl2×[2cosβl+jsinβl(Z0eZ00 +Z00Z0e )]=4cos2βl+4jcosβlsinβl(Z0eZ00 +Z0eZ00 )−(2+Z0eZ00+Z00Z0e)sin2βl2×[2cosβl+jsinβl(Z0eZ00 +Z00Z0e )]=[2cosβl+jsinβl(Z0eZ00 +Z00Z0e )]22×[2cosβl+jsinβl(Z0eZ00 +Z00Z0e )]=2cosβl+jsinβl(Z0eZ00 +Z00Z0e )2=2cosβl+jsinβl⋅Z0Z0e+Z002=cosβl+jsinβl⋅1−k2 11


S 31 = 1 − k 2 cos ⁡ β l 1 − k 2 + j sin ⁡ β l ⋅ S_{31}=\frac{\sqrt{1 - k^2}}{\cos\beta l\sqrt{1 - k^2} + j\sin\beta l \cdot } S31=cosβl1−k2 +jsinβl⋅1−k2

观察S参数矩阵或者利用对称性易得 S 31 = S 42 = S 24 = S 13 S_{31}=S_{42}=S_{24}=S_{13} S31=S42=S24=S13
S p = [ 0 j k sin ⁡ β l j sin ⁡ β l + cos ⁡ β l 1 − k 2 1 − k 2 cos ⁡ β l 1 − k 2 + j sin ⁡ β l ⋅ 0 j k sin ⁡ β l j sin ⁡ β l + cos ⁡ β l 1 − k 2 0 0 1 − k 2 cos ⁡ β l 1 − k 2 + j sin ⁡ β l ⋅ 1 − k 2 cos ⁡ β l 1 − k 2 + j sin ⁡ β l ⋅ 0 0 j k sin ⁡ β l j sin ⁡ β l + cos ⁡ β l 1 − k 2 0 1 − k 2 cos ⁡ β l 1 − k 2 + j sin ⁡ β l ⋅ j k sin ⁡ β l j sin ⁡ β l + cos ⁡ β l 1 − k 2 0 ] \mathbf{S}_p = \begin{bmatrix} 0& \frac{ j k \sin\beta l }{ j \sin \beta l +\cos \beta l \sqrt{1 - k^2} } & \frac{\sqrt{1 - k^2}}{\cos\beta l\sqrt{1 - k^2} + j\sin\beta l \cdot } & 0 \\ \frac{ j k \sin\beta l }{ j \sin \beta l +\cos \beta l \sqrt{1 - k^2} } & 0 & 0 &\frac{\sqrt{1 - k^2}}{\cos\beta l\sqrt{1 - k^2} + j\sin\beta l \cdot } \\ \frac{\sqrt{1 - k^2}}{\cos\beta l\sqrt{1 - k^2} + j\sin\beta l \cdot } & 0 & 0 & \frac{ j k \sin\beta l }{ j \sin \beta l +\cos \beta l \sqrt{1 - k^2} } \\ 0 & \frac{\sqrt{1 - k^2}}{\cos\beta l\sqrt{1 - k^2} + j\sin\beta l \cdot }& \frac{ j k \sin\beta l }{ j \sin \beta l +\cos \beta l \sqrt{1 - k^2} } &0 \end{bmatrix} Sp= 0jsinβl+cosβl1−k2 jksinβlcosβl1−k2 +jsinβl⋅1−k2 0jsinβl+cosβl1−k2 jksinβl00cosβl1−k2 +jsinβl⋅1−k2 cosβl1−k2 +jsinβl⋅1−k2 00jsinβl+cosβl1−k2 jksinβl0cosβl1−k2 +jsinβl⋅1−k2 jsinβl+cosβl1−k2 jksinβl0
当 θ = 2 π l / λ = β l = 1 / 4 π \theta=2\pi l/\lambda=\beta l=1/4\pi θ=2πl/λ=βl=1/4π时,对应四分之波长传输线
S p = [ 0 k − j 1 − k 2 0 k 0 0 − j 1 − k 2 − j 1 − k 2 0 0 k 0 − j 1 − k 2 C 0 ] \mathbf{S}_p = \begin{bmatrix} 0& k &-j\sqrt{1 - k^2} & 0 \\ k & 0 & 0 &-j\sqrt{1 - k^2} \\ -j\sqrt{1 - k^2}& 0 & 0 & k \\ 0 & -j\sqrt{1 - k^2}& C &0 \end{bmatrix} Sp= 0k−j1−k2 0k00−j1−k2 −j1−k2 00C0−j1−k2 k0

可以看到交换2,3端口定义与图2表达式相同

图2:RF and Microwave Coupled-Line Circuits推导的结果

相关推荐
herinspace2 小时前
管家婆分销软件中如何进行现金流量分配
运维·服务器·数据库·学习·电脑
历程里程碑2 小时前
Linux 10:make Makefile自动化编译实战指南及进度条解析
linux·运维·服务器·开发语言·c++·笔记·自动化
LYS_06182 小时前
寒假学习(8)(c语言8+模数电8)
c语言·学习·pcb
AI浩2 小时前
学习语言驱动的序列级别模态不变表示用于视频可见光-红外行人重识别
学习·音视频
进阶小白猿2 小时前
Java技术八股学习Day26
java·开发语言·学习
以孝治家行动2 小时前
传承家风家训 涵养时代新人——慈明学校以孝治家阳光家庭教育中心开展线上学习会
学习·以孝治家·正能量
强子感冒了2 小时前
MySQL学习笔记:索引和数据库设计
数据库·学习·mysql
flashier2 小时前
ESP32学习笔记_WiFi(3)——HTTP
网络·笔记·单片机·网络协议·学习·http·esp32
70asunflower2 小时前
Zotero论文阅读标记颜色框架
人工智能·学习·考研