DPDK学习笔记(1):二层转发应用例代码解析

简介

本系列记录了我学习dpdk的学习笔记,文章内容会参考dpdk的官方文档,同时也会用ai辅助自己理解代码。选用的dpdk版本是24.11.4。

目录

简介

二层转发应用例功能介绍

函数讲解

[static void l2fwd_main_loop(void)](#static void l2fwd_main_loop(void))

参数解析

程序执行流程

EAL初始化:

基础检查与端口转发配对配置:

[配置转发目标端口(l2fwd_dst_ports 数组):](#配置转发目标端口(l2fwd_dst_ports 数组):)

lcore与端口绑定:

mbuf池创建:

网卡端口初始化:

链路状态检查:

启动多lcore转发线程:

等待执行,然后关闭端口和EAL清理:

程序运行结果

dpdk二层转发机配置:

发包机配置:

抓包机配置:

运行结果:

解决方案:

相关参考文档


二层转发应用例功能介绍

该程序的功能是将数据包在成对的端口间转发,默认情况下是端口0和端口1、端口2和端口3.....以此类推。如果启用了MAC地址修改功能的话会将数据包的源MAC地址修改成接受到数据包的端口的MAC地址,目的地址修改成02:00:00:00:00:xx,其中xx为目的端口的端口号。

代码路径为dpdk源码中的 /examples/l2fwd 完整代码如下:

cpp 复制代码
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2016 Intel Corporation
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/queue.h>
#include <setjmp.h>
#include <stdarg.h>
#include <ctype.h>
#include <errno.h>
#include <getopt.h>
#include <signal.h>
#include <stdbool.h>

#include <rte_common.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_string_fns.h>

static volatile bool force_quit;

/* MAC updating enabled by default */
static int mac_updating = 1;

/* Ports set in promiscuous mode off by default. */
static int promiscuous_on;

#define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1

#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
#define MEMPOOL_CACHE_SIZE 256

/*
 * Configurable number of RX/TX ring descriptors
 */
#define RX_DESC_DEFAULT 1024
#define TX_DESC_DEFAULT 1024
static uint16_t nb_rxd = RX_DESC_DEFAULT;
static uint16_t nb_txd = TX_DESC_DEFAULT;

/* ethernet addresses of ports */
static struct rte_ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];

/* mask of enabled ports */
static uint32_t l2fwd_enabled_port_mask = 0;

/* list of enabled ports */
static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];

struct __rte_cache_aligned port_pair_params {
#define NUM_PORTS	2
	uint16_t port[NUM_PORTS];
};

static struct port_pair_params port_pair_params_array[RTE_MAX_ETHPORTS / 2];
static struct port_pair_params *port_pair_params;
static uint16_t nb_port_pair_params;

static unsigned int l2fwd_rx_queue_per_lcore = 1;

#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 16
/* List of queues to be polled for a given lcore. 8< */
struct __rte_cache_aligned lcore_queue_conf {
	unsigned n_rx_port;
	unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
};
struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
/* >8 End of list of queues to be polled for a given lcore. */

static struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];

static struct rte_eth_conf port_conf = {
	.txmode = {
		.mq_mode = RTE_ETH_MQ_TX_NONE,
	},
};

struct rte_mempool * l2fwd_pktmbuf_pool = NULL;

/* Per-port statistics struct */
struct __rte_cache_aligned l2fwd_port_statistics {
	uint64_t tx;
	uint64_t rx;
	uint64_t dropped;
};
struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];

#define MAX_TIMER_PERIOD 86400 /* 1 day max */
/* A tsc-based timer responsible for triggering statistics printout */
static uint64_t timer_period = 10; /* default period is 10 seconds */

/* Print out statistics on packets dropped */
static void
print_stats(void)
{
	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
	unsigned portid;

	total_packets_dropped = 0;
	total_packets_tx = 0;
	total_packets_rx = 0;

	const char clr[] = { 27, '[', '2', 'J', '\0' };
	const char topLeft[] = { 27, '[', '1', ';', '1', 'H','\0' };

		/* Clear screen and move to top left */
	printf("%s%s", clr, topLeft);

	printf("\nPort statistics ====================================");

	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
		/* skip disabled ports */
		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
			continue;
		printf("\nStatistics for port %u ------------------------------"
			   "\nPackets sent: %24"PRIu64
			   "\nPackets received: %20"PRIu64
			   "\nPackets dropped: %21"PRIu64,
			   portid,
			   port_statistics[portid].tx,
			   port_statistics[portid].rx,
			   port_statistics[portid].dropped);

		total_packets_dropped += port_statistics[portid].dropped;
		total_packets_tx += port_statistics[portid].tx;
		total_packets_rx += port_statistics[portid].rx;
	}
	printf("\nAggregate statistics ==============================="
		   "\nTotal packets sent: %18"PRIu64
		   "\nTotal packets received: %14"PRIu64
		   "\nTotal packets dropped: %15"PRIu64,
		   total_packets_tx,
		   total_packets_rx,
		   total_packets_dropped);
	printf("\n====================================================\n");

	fflush(stdout);
}

static void
l2fwd_mac_updating(struct rte_mbuf *m, unsigned dest_portid)
{
	struct rte_ether_hdr *eth;
	void *tmp;

	eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);

	/* 02:00:00:00:00:xx */
	tmp = &eth->dst_addr.addr_bytes[0];
	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40);

	/* src addr */
	rte_ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], &eth->src_addr);
}

/* Simple forward. 8< */
static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{
	unsigned dst_port;
	int sent;
	struct rte_eth_dev_tx_buffer *buffer;

	dst_port = l2fwd_dst_ports[portid];

	if (mac_updating)
		l2fwd_mac_updating(m, dst_port);

	buffer = tx_buffer[dst_port];
	sent = rte_eth_tx_buffer(dst_port, 0, buffer, m);
	if (sent)
		port_statistics[dst_port].tx += sent;
}
/* >8 End of simple forward. */

/* main processing loop */
static void
l2fwd_main_loop(void)
{
	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
	struct rte_mbuf *m;
	int sent;
	unsigned lcore_id;
	uint64_t prev_tsc, diff_tsc, cur_tsc, timer_tsc;
	unsigned i, j, portid, nb_rx;
	struct lcore_queue_conf *qconf;
	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S *
			BURST_TX_DRAIN_US;
	struct rte_eth_dev_tx_buffer *buffer;

	prev_tsc = 0;
	timer_tsc = 0;

	lcore_id = rte_lcore_id();
	qconf = &lcore_queue_conf[lcore_id];

	if (qconf->n_rx_port == 0) {
		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
		return;
	}

	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);

	for (i = 0; i < qconf->n_rx_port; i++) {

		portid = qconf->rx_port_list[i];
		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
			portid);

	}

	while (!force_quit) {

		/* Drains TX queue in its main loop. 8< */
		cur_tsc = rte_rdtsc();

		/*
		 * TX burst queue drain
		 */
		diff_tsc = cur_tsc - prev_tsc;
		if (unlikely(diff_tsc > drain_tsc)) {

			for (i = 0; i < qconf->n_rx_port; i++) {

				portid = l2fwd_dst_ports[qconf->rx_port_list[i]];
				buffer = tx_buffer[portid];

				sent = rte_eth_tx_buffer_flush(portid, 0, buffer);
				if (sent)
					port_statistics[portid].tx += sent;

			}

			/* if timer is enabled */
			if (timer_period > 0) {

				/* advance the timer */
				timer_tsc += diff_tsc;

				/* if timer has reached its timeout */
				if (unlikely(timer_tsc >= timer_period)) {

					/* do this only on main core */
					if (lcore_id == rte_get_main_lcore()) {
						print_stats();
						/* reset the timer */
						timer_tsc = 0;
					}
				}
			}

			prev_tsc = cur_tsc;
		}
		/* >8 End of draining TX queue. */

		/* Read packet from RX queues. 8< */
		for (i = 0; i < qconf->n_rx_port; i++) {

			portid = qconf->rx_port_list[i];
			nb_rx = rte_eth_rx_burst(portid, 0,
						 pkts_burst, MAX_PKT_BURST);

			if (unlikely(nb_rx == 0))
				continue;

			port_statistics[portid].rx += nb_rx;

			for (j = 0; j < nb_rx; j++) {
				m = pkts_burst[j];
				rte_prefetch0(rte_pktmbuf_mtod(m, void *));
				l2fwd_simple_forward(m, portid);
			}
		}
		/* >8 End of read packet from RX queues. */
	}
}

static int
l2fwd_launch_one_lcore(__rte_unused void *dummy)
{
	l2fwd_main_loop();
	return 0;
}

/* display usage */
static void
l2fwd_usage(const char *prgname)
{
	printf("%s [EAL options] -- -p PORTMASK [-P] [-q NQ]\n"
	       "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
	       "  -P : Enable promiscuous mode\n"
	       "  -q NQ: number of queue (=ports) per lcore (default is 1)\n"
	       "  -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default, 86400 maximum)\n"
	       "  --no-mac-updating: Disable MAC addresses updating (enabled by default)\n"
	       "      When enabled:\n"
	       "       - The source MAC address is replaced by the TX port MAC address\n"
	       "       - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n"
	       "  --portmap: Configure forwarding port pair mapping\n"
	       "	      Default: alternate port pairs\n\n",
	       prgname);
}

static int
l2fwd_parse_portmask(const char *portmask)
{
	char *end = NULL;
	unsigned long pm;

	/* parse hexadecimal string */
	pm = strtoul(portmask, &end, 16);
	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
		return 0;

	return pm;
}

static int
l2fwd_parse_port_pair_config(const char *q_arg)
{
	enum fieldnames {
		FLD_PORT1 = 0,
		FLD_PORT2,
		_NUM_FLD
	};
	unsigned long int_fld[_NUM_FLD];
	const char *p, *p0 = q_arg;
	char *str_fld[_NUM_FLD];
	unsigned int size;
	char s[256];
	char *end;
	int i;

	nb_port_pair_params = 0;

	while ((p = strchr(p0, '(')) != NULL) {
		++p;
		p0 = strchr(p, ')');
		if (p0 == NULL)
			return -1;

		size = p0 - p;
		if (size >= sizeof(s))
			return -1;

		memcpy(s, p, size);
		s[size] = '\0';
		if (rte_strsplit(s, sizeof(s), str_fld,
				 _NUM_FLD, ',') != _NUM_FLD)
			return -1;
		for (i = 0; i < _NUM_FLD; i++) {
			errno = 0;
			int_fld[i] = strtoul(str_fld[i], &end, 0);
			if (errno != 0 || end == str_fld[i] ||
			    int_fld[i] >= RTE_MAX_ETHPORTS)
				return -1;
		}
		if (nb_port_pair_params >= RTE_MAX_ETHPORTS/2) {
			printf("exceeded max number of port pair params: %hu\n",
				nb_port_pair_params);
			return -1;
		}
		port_pair_params_array[nb_port_pair_params].port[0] =
				(uint16_t)int_fld[FLD_PORT1];
		port_pair_params_array[nb_port_pair_params].port[1] =
				(uint16_t)int_fld[FLD_PORT2];
		++nb_port_pair_params;
	}
	port_pair_params = port_pair_params_array;
	return 0;
}

static unsigned int
l2fwd_parse_nqueue(const char *q_arg)
{
	char *end = NULL;
	unsigned long n;

	/* parse hexadecimal string */
	n = strtoul(q_arg, &end, 10);
	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
		return 0;
	if (n == 0)
		return 0;
	if (n >= MAX_RX_QUEUE_PER_LCORE)
		return 0;

	return n;
}

static int
l2fwd_parse_timer_period(const char *q_arg)
{
	char *end = NULL;
	int n;

	/* parse number string */
	n = strtol(q_arg, &end, 10);
	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
		return -1;
	if (n >= MAX_TIMER_PERIOD)
		return -1;

	return n;
}

static const char short_options[] =
	"p:"  /* portmask */
	"P"   /* promiscuous */
	"q:"  /* number of queues */
	"T:"  /* timer period */
	;

#define CMD_LINE_OPT_NO_MAC_UPDATING "no-mac-updating"
#define CMD_LINE_OPT_PORTMAP_CONFIG "portmap"

enum {
	/* long options mapped to a short option */

	/* first long only option value must be >= 256, so that we won't
	 * conflict with short options */
	CMD_LINE_OPT_NO_MAC_UPDATING_NUM = 256,
	CMD_LINE_OPT_PORTMAP_NUM,
};

static const struct option lgopts[] = {
	{ CMD_LINE_OPT_NO_MAC_UPDATING, no_argument, 0,
		CMD_LINE_OPT_NO_MAC_UPDATING_NUM},
	{ CMD_LINE_OPT_PORTMAP_CONFIG, 1, 0, CMD_LINE_OPT_PORTMAP_NUM},
	{NULL, 0, 0, 0}
};

/* Parse the argument given in the command line of the application */
static int
l2fwd_parse_args(int argc, char **argv)
{
	int opt, ret, timer_secs;
	char **argvopt;
	int option_index;
	char *prgname = argv[0];

	argvopt = argv;
	port_pair_params = NULL;

	while ((opt = getopt_long(argc, argvopt, short_options,
				  lgopts, &option_index)) != EOF) {

		switch (opt) {
		/* portmask */
		case 'p':
			l2fwd_enabled_port_mask = l2fwd_parse_portmask(optarg);
			if (l2fwd_enabled_port_mask == 0) {
				printf("invalid portmask\n");
				l2fwd_usage(prgname);
				return -1;
			}
			break;
		case 'P':
			promiscuous_on = 1;
			break;

		/* nqueue */
		case 'q':
			l2fwd_rx_queue_per_lcore = l2fwd_parse_nqueue(optarg);
			if (l2fwd_rx_queue_per_lcore == 0) {
				printf("invalid queue number\n");
				l2fwd_usage(prgname);
				return -1;
			}
			break;

		/* timer period */
		case 'T':
			timer_secs = l2fwd_parse_timer_period(optarg);
			if (timer_secs < 0) {
				printf("invalid timer period\n");
				l2fwd_usage(prgname);
				return -1;
			}
			timer_period = timer_secs;
			break;

		/* long options */
		case CMD_LINE_OPT_PORTMAP_NUM:
			ret = l2fwd_parse_port_pair_config(optarg);
			if (ret) {
				fprintf(stderr, "Invalid config\n");
				l2fwd_usage(prgname);
				return -1;
			}
			break;

		case CMD_LINE_OPT_NO_MAC_UPDATING_NUM:
			mac_updating = 0;
			break;

		default:
			l2fwd_usage(prgname);
			return -1;
		}
	}

	if (optind >= 0)
		argv[optind-1] = prgname;

	ret = optind-1;
	optind = 1; /* reset getopt lib */
	return ret;
}

/*
 * Check port pair config with enabled port mask,
 * and for valid port pair combinations.
 */
static int
check_port_pair_config(void)
{
	uint32_t port_pair_config_mask = 0;
	uint32_t port_pair_mask = 0;
	uint16_t index, i, portid;

	for (index = 0; index < nb_port_pair_params; index++) {
		port_pair_mask = 0;

		for (i = 0; i < NUM_PORTS; i++)  {
			portid = port_pair_params[index].port[i];
			if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) {
				printf("port %u is not enabled in port mask\n",
				       portid);
				return -1;
			}
			if (!rte_eth_dev_is_valid_port(portid)) {
				printf("port %u is not present on the board\n",
				       portid);
				return -1;
			}

			port_pair_mask |= 1 << portid;
		}

		if (port_pair_config_mask & port_pair_mask) {
			printf("port %u is used in other port pairs\n", portid);
			return -1;
		}
		port_pair_config_mask |= port_pair_mask;
	}

	l2fwd_enabled_port_mask &= port_pair_config_mask;

	return 0;
}

/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
	uint16_t portid;
	uint8_t count, all_ports_up, print_flag = 0;
	struct rte_eth_link link;
	int ret;
	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];

	printf("\nChecking link status");
	fflush(stdout);
	for (count = 0; count <= MAX_CHECK_TIME; count++) {
		if (force_quit)
			return;
		all_ports_up = 1;
		RTE_ETH_FOREACH_DEV(portid) {
			if (force_quit)
				return;
			if ((port_mask & (1 << portid)) == 0)
				continue;
			memset(&link, 0, sizeof(link));
			ret = rte_eth_link_get_nowait(portid, &link);
			if (ret < 0) {
				all_ports_up = 0;
				if (print_flag == 1)
					printf("Port %u link get failed: %s\n",
						portid, rte_strerror(-ret));
				continue;
			}
			/* print link status if flag set */
			if (print_flag == 1) {
				rte_eth_link_to_str(link_status_text,
					sizeof(link_status_text), &link);
				printf("Port %d %s\n", portid,
				       link_status_text);
				continue;
			}
			/* clear all_ports_up flag if any link down */
			if (link.link_status == RTE_ETH_LINK_DOWN) {
				all_ports_up = 0;
				break;
			}
		}
		/* after finally printing all link status, get out */
		if (print_flag == 1)
			break;

		if (all_ports_up == 0) {
			printf(".");
			fflush(stdout);
			rte_delay_ms(CHECK_INTERVAL);
		}

		/* set the print_flag if all ports up or timeout */
		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
			print_flag = 1;
			printf("done\n");
		}
	}
}

static void
signal_handler(int signum)
{
	if (signum == SIGINT || signum == SIGTERM) {
		printf("\n\nSignal %d received, preparing to exit...\n",
				signum);
		force_quit = true;
	}
}

int
main(int argc, char **argv)
{
	struct lcore_queue_conf *qconf;
	int ret;
	uint16_t nb_ports;
	uint16_t nb_ports_available = 0;
	uint16_t portid, last_port;
	unsigned lcore_id, rx_lcore_id;
	unsigned nb_ports_in_mask = 0;
	unsigned int nb_lcores = 0;
	unsigned int nb_mbufs;

	/* Init EAL. 8< */
	ret = rte_eal_init(argc, argv);
	if (ret < 0)
		rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
	argc -= ret;
	argv += ret;

	force_quit = false;
	signal(SIGINT, signal_handler);
	signal(SIGTERM, signal_handler);

	/* parse application arguments (after the EAL ones) */
	ret = l2fwd_parse_args(argc, argv);
	if (ret < 0)
		rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");
	/* >8 End of init EAL. */

	printf("MAC updating %s\n", mac_updating ? "enabled" : "disabled");

	/* convert to number of cycles */
	timer_period *= rte_get_timer_hz();

	nb_ports = rte_eth_dev_count_avail();
	if (nb_ports == 0)
		rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");

	if (port_pair_params != NULL) {
		if (check_port_pair_config() < 0)
			rte_exit(EXIT_FAILURE, "Invalid port pair config\n");
	}

	/* check port mask to possible port mask */
	if (l2fwd_enabled_port_mask & ~((1 << nb_ports) - 1))
		rte_exit(EXIT_FAILURE, "Invalid portmask; possible (0x%x)\n",
			(1 << nb_ports) - 1);

	/* Initialization of the driver. 8< */

	/* reset l2fwd_dst_ports */
	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
		l2fwd_dst_ports[portid] = 0;
	last_port = 0;

	/* populate destination port details */
	if (port_pair_params != NULL) {
		uint16_t idx, p;

		for (idx = 0; idx < (nb_port_pair_params << 1); idx++) {
			p = idx & 1;
			portid = port_pair_params[idx >> 1].port[p];
			l2fwd_dst_ports[portid] =
				port_pair_params[idx >> 1].port[p ^ 1];
		}
	} else {
		RTE_ETH_FOREACH_DEV(portid) {
			/* skip ports that are not enabled */
			if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
				continue;

			if (nb_ports_in_mask % 2) {
				l2fwd_dst_ports[portid] = last_port;
				l2fwd_dst_ports[last_port] = portid;
			} else {
				last_port = portid;
			}

			nb_ports_in_mask++;
		}
		if (nb_ports_in_mask % 2) {
			printf("Notice: odd number of ports in portmask.\n");
			l2fwd_dst_ports[last_port] = last_port;
		}
	}
	/* >8 End of initialization of the driver. */

	rx_lcore_id = 0;
	qconf = NULL;

	/* Initialize the port/queue configuration of each logical core */
	RTE_ETH_FOREACH_DEV(portid) {
		/* skip ports that are not enabled */
		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
			continue;

		/* get the lcore_id for this port */
		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
		       lcore_queue_conf[rx_lcore_id].n_rx_port ==
		       l2fwd_rx_queue_per_lcore) {
			rx_lcore_id++;
			if (rx_lcore_id >= RTE_MAX_LCORE)
				rte_exit(EXIT_FAILURE, "Not enough cores\n");
		}

		if (qconf != &lcore_queue_conf[rx_lcore_id]) {
			/* Assigned a new logical core in the loop above. */
			qconf = &lcore_queue_conf[rx_lcore_id];
			nb_lcores++;
		}

		qconf->rx_port_list[qconf->n_rx_port] = portid;
		qconf->n_rx_port++;
		printf("Lcore %u: RX port %u TX port %u\n", rx_lcore_id,
		       portid, l2fwd_dst_ports[portid]);
	}

	nb_mbufs = RTE_MAX(nb_ports * (nb_rxd + nb_txd + MAX_PKT_BURST +
		nb_lcores * MEMPOOL_CACHE_SIZE), 8192U);

	/* Create the mbuf pool. 8< */
	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", nb_mbufs,
		MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
		rte_socket_id());
	if (l2fwd_pktmbuf_pool == NULL)
		rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n");
	/* >8 End of create the mbuf pool. */

	/* Initialise each port */
	RTE_ETH_FOREACH_DEV(portid) {
		struct rte_eth_rxconf rxq_conf;
		struct rte_eth_txconf txq_conf;
		struct rte_eth_conf local_port_conf = port_conf;
		struct rte_eth_dev_info dev_info;

		/* skip ports that are not enabled */
		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) {
			printf("Skipping disabled port %u\n", portid);
			continue;
		}
		nb_ports_available++;

		/* init port */
		printf("Initializing port %u... ", portid);
		fflush(stdout);

		ret = rte_eth_dev_info_get(portid, &dev_info);
		if (ret != 0)
			rte_exit(EXIT_FAILURE,
				"Error during getting device (port %u) info: %s\n",
				portid, strerror(-ret));

		if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
			local_port_conf.txmode.offloads |=
				RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
		/* Configure the number of queues for a port. */
		ret = rte_eth_dev_configure(portid, 1, 1, &local_port_conf);
		if (ret < 0)
			rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n",
				  ret, portid);
		/* >8 End of configuration of the number of queues for a port. */

		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
						       &nb_txd);
		if (ret < 0)
			rte_exit(EXIT_FAILURE,
				 "Cannot adjust number of descriptors: err=%d, port=%u\n",
				 ret, portid);

		ret = rte_eth_macaddr_get(portid,
					  &l2fwd_ports_eth_addr[portid]);
		if (ret < 0)
			rte_exit(EXIT_FAILURE,
				 "Cannot get MAC address: err=%d, port=%u\n",
				 ret, portid);

		/* init one RX queue */
		fflush(stdout);
		rxq_conf = dev_info.default_rxconf;
		rxq_conf.offloads = local_port_conf.rxmode.offloads;
		/* RX queue setup. 8< */
		ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
					     rte_eth_dev_socket_id(portid),
					     &rxq_conf,
					     l2fwd_pktmbuf_pool);
		if (ret < 0)
			rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u\n",
				  ret, portid);
		/* >8 End of RX queue setup. */

		/* Init one TX queue on each port. 8< */
		fflush(stdout);
		txq_conf = dev_info.default_txconf;
		txq_conf.offloads = local_port_conf.txmode.offloads;
		ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,
				rte_eth_dev_socket_id(portid),
				&txq_conf);
		if (ret < 0)
			rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n",
				ret, portid);
		/* >8 End of init one TX queue on each port. */

		/* Initialize TX buffers */
		tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
				RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
				rte_eth_dev_socket_id(portid));
		if (tx_buffer[portid] == NULL)
			rte_exit(EXIT_FAILURE, "Cannot allocate buffer for tx on port %u\n",
					portid);

		rte_eth_tx_buffer_init(tx_buffer[portid], MAX_PKT_BURST);

		ret = rte_eth_tx_buffer_set_err_callback(tx_buffer[portid],
				rte_eth_tx_buffer_count_callback,
				&port_statistics[portid].dropped);
		if (ret < 0)
			rte_exit(EXIT_FAILURE,
			"Cannot set error callback for tx buffer on port %u\n",
				 portid);

		ret = rte_eth_dev_set_ptypes(portid, RTE_PTYPE_UNKNOWN, NULL,
					     0);
		if (ret < 0)
			printf("Port %u, Failed to disable Ptype parsing\n",
					portid);
		/* Start device */
		ret = rte_eth_dev_start(portid);
		if (ret < 0)
			rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u\n",
				  ret, portid);

		printf("done: \n");
		if (promiscuous_on) {
			ret = rte_eth_promiscuous_enable(portid);
			if (ret != 0)
				rte_exit(EXIT_FAILURE,
					"rte_eth_promiscuous_enable:err=%s, port=%u\n",
					rte_strerror(-ret), portid);
		}

		printf("Port %u, MAC address: " RTE_ETHER_ADDR_PRT_FMT "\n\n",
			portid,
			RTE_ETHER_ADDR_BYTES(&l2fwd_ports_eth_addr[portid]));

		/* initialize port stats */
		memset(&port_statistics, 0, sizeof(port_statistics));
	}

	if (!nb_ports_available) {
		rte_exit(EXIT_FAILURE,
			"All available ports are disabled. Please set portmask.\n");
	}

	check_all_ports_link_status(l2fwd_enabled_port_mask);

	ret = 0;
	/* launch per-lcore init on every lcore */
	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, NULL, CALL_MAIN);
	RTE_LCORE_FOREACH_WORKER(lcore_id) {
		if (rte_eal_wait_lcore(lcore_id) < 0) {
			ret = -1;
			break;
		}
	}

	RTE_ETH_FOREACH_DEV(portid) {
		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
			continue;
		printf("Closing port %d...", portid);
		ret = rte_eth_dev_stop(portid);
		if (ret != 0)
			printf("rte_eth_dev_stop: err=%d, port=%d\n",
			       ret, portid);
		rte_eth_dev_close(portid);
		printf(" Done\n");
	}

	/* clean up the EAL */
	rte_eal_cleanup();
	printf("Bye...\n");

	return ret;
}

函数讲解

static void l2fwd_main_loop(void)

static void

l2fwd_main_loop(void)

{

/* 定义用于接收数据包的 mbuf 数组指针,大小为 MAX_PKT_BURST (32) */

struct rte_mbuf *pkts_burst[MAX_PKT_BURST];

struct rte_mbuf *m;

int sent;

unsigned lcore_id;

/* 时间戳相关变量,用于定时任务 */

uint64_t prev_tsc, diff_tsc, cur_tsc, timer_tsc;

unsigned i, j, portid, nb_rx;

struct lcore_queue_conf *qconf;

/* 计算 TX 缓冲区刷新的时间阈值(基于 CPU 频率),这里约等于 100 微秒 */

const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S *

BURST_TX_DRAIN_US;

struct rte_eth_dev_tx_buffer *buffer;

prev_tsc = 0;

timer_tsc = 0;

/* 获取当前逻辑核的 ID */

lcore_id = rte_lcore_id();

/* 获取该逻辑核的配置(负责哪些端口) */

qconf = &lcore_queue_conf[lcore_id];

/* 如果该逻辑核没有分配到任何 RX 端口,则直接返回,不参与循环 */

if (qconf->n_rx_port == 0) {

RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);

return;

}

RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);

/* 打印该逻辑核负责的所有 RX 端口 */

for (i = 0; i < qconf->n_rx_port; i++) {

portid = qconf->rx_port_list[i];

RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,

portid);

}

/* 主循环:只要没收到退出信号(force_quit),就一直运行 */

while (!force_quit) {

/* Drains TX queue in its main loop. 8< */

/* 获取当前的 TSC (Time Stamp Counter) 周期数 */

cur_tsc = rte_rdtsc();

/*

* TX burst queue drain

* 检查是否需要刷新 TX 缓冲区

*/

diff_tsc = cur_tsc - prev_tsc;

/* 如果距离上次检查的时间超过了 drain_tsc (约 100us) */

if (unlikely(diff_tsc > drain_tsc)) {

/* 遍历该核心负责的所有端口 */

for (i = 0; i < qconf->n_rx_port; i++) {

/* 获取接收端口对应的目的端口(发送端口) */

portid = l2fwd_dst_ports[qconf->rx_port_list[i]];

buffer = tx_buffer[portid];

/* 强制刷新 TX 缓冲区,将缓存的包发送出去 */

sent = rte_eth_tx_buffer_flush(portid, 0, buffer);

if (sent)

port_statistics[portid].tx += sent;

}

/* if timer is enabled */

/* 统计信息打印定时器 */

if (timer_period > 0) {

/* advance the timer */

timer_tsc += diff_tsc;

/* if timer has reached its timeout */

/* 如果累计时间超过了设定的打印周期(默认 10 秒) */

if (unlikely(timer_tsc >= timer_period)) {

/* do this only on main core */

/* 只有主核负责打印统计信息,避免输出混乱 */

if (lcore_id == rte_get_main_lcore()) {

print_stats();

/* reset the timer */

timer_tsc = 0;

}

}

}

/* 更新上次检查的时间戳 */

prev_tsc = cur_tsc;

}

/* >8 End of draining TX queue. */

/* Read packet from RX queues. 8< */

/* 遍历该核心负责的所有 RX 端口,进行收包 */

for (i = 0; i < qconf->n_rx_port; i++) {

portid = qconf->rx_port_list[i];

/* 从端口接收一批数据包,最大为 MAX_PKT_BURST */

nb_rx = rte_eth_rx_burst(portid, 0,

pkts_burst, MAX_PKT_BURST);

/* 如果没有收到包,继续下一个端口 */

if (unlikely(nb_rx == 0))

continue;

/* 更新接收统计 */

port_statistics[portid].rx += nb_rx;

/* 处理接收到的每一个数据包 */

for (j = 0; j < nb_rx; j++) {

m = pkts_burst[j];

/* 预取数据包头部到 CPU 缓存,提高后续处理速度 */

rte_prefetch0(rte_pktmbuf_mtod(m, void *));

/* 调用转发函数进行处理和发送 */

l2fwd_simple_forward(m, portid);

}

}

/* >8 End of read packet from RX queues. */

}

}

这个函数是二层转发最核心的函数,主要任务是从 RX 队列批量读取入口包,大小为 MAX_PKT_BURST,rte_eth_rx_burst()函数将 mbuf 指针写入本地表,并返回表中可用的 mbuf 数量。然后,表中的每个 mbuf 由 l2fwd_simple_forward() 函数处理。l2fwd_simple_forward() 函数处理过程非常简单:先从接收端口处理 TX 端口,然后如果启用 MAC 地址更新,替换源和目的 MAC 地址。

参数解析

l2fwd_usage(const char *prgname):打印程序的使用帮助信息。

l2fwd_parse_portmask(const char *portmask):解析 -p 参数,使用 strtoul 将十六进制字符串转换为 unsigned long 类型的位掩码。

l2fwd_parse_nqueue(const char *q_arg):解析 -q 参数(每个核的队列数)。

l2fwd_parse_timer_period(const char *q_arg):解析 -T 参数(统计刷新周期)。

l2fwd_parse_port_pair_config(const char *q_arg):解析 --portmap 参数,允许用户手动指定转发关系。

l2fwd_parse_args(int argc, char **argv):命令行参数解析的主入口,使用标准的 getopt_long 函数库来处理短选项(如 -p )和长选项(如 --portmap )。

check_port_pair_config(void):在参数解析完成后,验证用户指定的端口对配置是否合法,如:配置的端口必须在 -p 指定的端口掩码中开启、端口必须是 DPDK 能够识别的有效端口、一个端口不能被重复使用在多个配对中。

程序执行流程

EAL初始化:

// 初始化EAL,解析EAL参数(如-l指定lcore、-n指定内存通道数)

ret = rte_eal_init(argc, argv);

if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

argc -= ret; // 调整参数个数,跳过已解析的EAL参数

argv += ret; // 调整参数指针,指向后续的应用层参数

// 初始化退出标记,绑定信号处理函数(Ctrl+C/SIGINT、SIGTERM)

force_quit = false;

signal(SIGINT, signal_handler); // Ctrl+C触发signal_handler,置force_quit=1

signal(SIGTERM, signal_handler); // 进程终止信号触发

// 解析L2FWD应用层参数(如--portmask、--promiscuous、--mac-updating)

ret = l2fwd_parse_args(argc, argv);

if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");

基础检查与端口转发配对配置:

printf("MAC updating %s\n", mac_updating ? "enabled" : "disabled");

// 转换定时器周期为CPU周期数(用于后续统计/定时,本文未实际使用)

timer_period *= rte_get_timer_hz();

// 获取DPDK识别的所有可用物理端口数

nb_ports = rte_eth_dev_count_avail();

if (nb_ports == 0)

rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");

// 若用户自定义了端口配对(port_pair_params),检查配置合法性

if (port_pair_params != NULL) {

if (check_port_pair_config() < 0)

rte_exit(EXIT_FAILURE, "Invalid port pair config\n");

}

// 检查端口掩码是否合法:掩码不能包含超出可用端口数的端口

if (l2fwd_enabled_port_mask & ~((1 << nb_ports) - 1))

rte_exit(EXIT_FAILURE, "Invalid portmask; possible (0x%x)\n", (1 << nb_ports) - 1);

配置转发目标端口(l2fwd_dst_ports 数组):

// 重置转发目标端口数组,初始值为0

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)

l2fwd_dst_ports[portid] = 0;

last_port = 0;

// 模式1:用户自定义端口配对(如指定0→2、1→3)

if (port_pair_params != NULL) {

uint16_t idx, p;

for (idx = 0; idx < (nb_port_pair_params << 1); idx++) {

p = idx & 1; // 0或1,代表配对的两个端口

portid = port_pair_params[idx >> 1].port[p];

// 配对端口互指:port[p]的目标是port[p^1],port[p^1]的目标是port[p]

l2fwd_dst_ports[portid] = port_pair_params[idx >> 1].port[p ^ 1];

}

}

// 模式2:默认自动奇偶配对(无自定义时,0↔1、2↔3,奇数个端口则最后一个自环)

else {

RTE_ETH_FOREACH_DEV(portid) {

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)

continue; // 跳过未启用的端口

if (nb_ports_in_mask % 2) { // 奇数个已启用端口:和上一个端口配对

l2fwd_dst_ports[portid] = last_port; // 当前端口→上一个端口

l2fwd_dst_ports[last_port] = portid; // 上一个端口→当前端口

} else { // 偶数个已启用端口:暂存为last_port,等待下一个端口配对

last_port = portid;

}

nb_ports_in_mask++;

}

// 若总启用端口数为奇数:最后一个端口自环(自己转发给自己)

if (nb_ports_in_mask % 2) {

printf("Notice: odd number of ports in portmask.\n");

l2fwd_dst_ports[last_port] = last_port;

}

}

lcore与端口绑定:

rx_lcore_id = 0; // 从lcore 0开始分配

qconf = NULL; // 指向当前lcore的配置结构体

// 遍历所有端口,为每个启用的端口分配lcore

RTE_ETH_FOREACH_DEV(portid) {

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)

continue;

// 找到可用的lcore:必须是启用的,且未达到每lcore最大RX端口数

while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||

lcore_queue_conf[rx_lcore_id].n_rx_port == l2fwd_rx_queue_per_lcore) {

rx_lcore_id++;

if (rx_lcore_id >= RTE_MAX_LCORE)

rte_exit(EXIT_FAILURE, "Not enough cores\n");

}

// 为当前端口分配了新的lcore,更新配置指针并统计lcore数

if (qconf != &lcore_queue_conf[rx_lcore_id]) {

qconf = &lcore_queue_conf[rx_lcore_id];

nb_lcores++; // 实际用到的lcore数

}

// 将当前端口加入该lcore的RX端口列表

qconf->rx_port_list[qconf->n_rx_port] = portid;

qconf->n_rx_port++;

// 打印绑定关系:lcore X 负责 RX端口Y → TX端口Z

printf("Lcore %u: RX port %u TX port %u\n", rx_lcore_id,

portid, l2fwd_dst_ports[portid]);

}

mbuf池创建:

// 计算需要的mbuf数量:结合端口数、描述符数、lcore缓存,最小8192

nb_mbufs = RTE_MAX(nb_ports * (nb_rxd + nb_txd + MAX_PKT_BURST + nb_lcores * MEMPOOL_CACHE_SIZE), 8192U);

// 创建mbuf内存池

l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", nb_mbufs,

MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,

rte_socket_id());

if (l2fwd_pktmbuf_pool == NULL)

rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n");

网卡端口初始化:

RTE_ETH_FOREACH_DEV(portid) {

struct rte_eth_rxconf rxq_conf;

struct rte_eth_txconf txq_conf;

struct rte_eth_conf local_port_conf = port_conf; // 端口核心配置

struct rte_eth_dev_info dev_info; // 网卡设备信息

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) {

printf("Skipping disabled port %u\n", portid);

continue;

}

nb_ports_available++; // 统计实际启用并初始化的端口数

printf("Initializing port %u... ", portid);

fflush(stdout);

// 步骤1:获取网卡设备信息(支持的卸载能力、默认队列配置等)

ret = rte_eth_dev_info_get(portid, &dev_info);

if (ret != 0)

rte_exit(EXIT_FAILURE, "Error during getting device info: %s\n", portid, strerror(-ret));

// 步骤2:启用TX MBUF快速释放卸载(硬件加速,提升发包性能)

if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)

local_port_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;

// 步骤3:配置端口:1个RX队列、1个TX队列,使用自定义配置

ret = rte_eth_dev_configure(portid, 1, 1, &local_port_conf);

if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);

// 步骤4:调整RX/TX描述符数(适配硬件限制,如必须是2的幂)

ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);

if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: err=%d, port=%u\n", ret, portid);

// 步骤5:获取端口MAC地址,存入全局数组(后续二层转发替换源MAC用)

ret = rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);

if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot get MAC address: err=%d, port=%u\n", ret, portid);

// 步骤6:初始化RX队列(1个):绑定mbuf池、NUMA本地化

rxq_conf = dev_info.default_rxconf;

rxq_conf.offloads = local_port_conf.rxmode.offloads;

ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,

rte_eth_dev_socket_id(portid), &rxq_conf, l2fwd_pktmbuf_pool);

if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u\n", ret, portid);

// 步骤7:初始化TX队列(1个):启用硬件卸载、NUMA本地化

txq_conf = dev_info.default_txconf;

txq_conf.offloads = local_port_conf.txmode.offloads;

ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,

rte_eth_dev_socket_id(portid), &txq_conf);

if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, portid);

// 步骤8:创建并初始化TX缓冲区(批量发包优化,减少硬件交互)

tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",

RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,

rte_eth_dev_socket_id(portid));

if (tx_buffer[portid] == NULL)

rte_exit(EXIT_FAILURE, "Cannot allocate buffer for tx on port %u\n", portid);

rte_eth_tx_buffer_init(tx_buffer[portid], MAX_PKT_BURST);

// 为TX缓冲区设置错误回调(统计发包失败的丢包数)

ret = rte_eth_tx_buffer_set_err_callback(tx_buffer[portid],

rte_eth_tx_buffer_count_callback, &port_statistics[portid].dropped);

if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot set error callback for tx buffer on port %u\n", portid);

// 步骤9:禁用Ptype解析(减少网卡硬件开销,无需解析数据包类型)

ret = rte_eth_dev_set_ptypes(portid, RTE_PTYPE_UNKNOWN, NULL, 0);

if (ret < 0)

printf("Port %u, Failed to disable Ptype parsing\n", portid);

// 步骤10:启动网卡端口(所有配置生效,端口进入就绪状态)

ret = rte_eth_dev_start(portid);

if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u\n", ret, portid);

printf("done: \n");

// 步骤11:启用混杂模式(接收所有数据包,二层转发必做)

if (promiscuous_on) {

ret = rte_eth_promiscuous_enable(portid);

if (ret != 0)

rte_exit(EXIT_FAILURE, "rte_eth_promiscuous_enable:err=%s, port=%u\n", rte_strerror(-ret), portid);

}

// 打印端口MAC地址

printf("Port %u, MAC address: " RTE_ETHER_ADDR_PRT_FMT "\n\n",

portid, RTE_ETHER_ADDR_BYTES(&l2fwd_ports_eth_addr[portid]));

// 步骤12:初始化端口统计信息(收包、发包、丢包数置0)

memset(&port_statistics, 0, sizeof(port_statistics));

}

// 检查是否有可用的端口,无则退出

if (!nb_ports_available) {

rte_exit(EXIT_FAILURE, "All available ports are disabled. Please set portmask.\n");

}

链路状态检查:

// 检查所有启用端口的链路状态,最长9秒,打印最终结果

check_all_ports_link_status(l2fwd_enabled_port_mask)

启动多lcore转发线程:

ret = 0;

// 向所有启用的worker lcore分发转发函数 l2fwd_launch_one_lcore

rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, NULL, CALL_MAIN);

// 等待所有worker lcore执行完成,检查返回值

RTE_LCORE_FOREACH_WORKER(lcore_id) {

if (rte_eal_wait_lcore(lcore_id) < 0) {

ret = -1;

break;

}

}

等待执行,然后关闭端口和EAL清理:

// 遍历所有启用的端口,停止并关闭网卡

RTE_ETH_FOREACH_DEV(portid) {

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)

continue;

printf("Closing port %d...", portid);

ret = rte_eth_dev_stop(portid); // 停止端口(停止收发包)

if (ret != 0)

printf("rte_eth_dev_stop: err=%d, port=%d\n", ret, portid);

rte_eth_dev_close(portid); // 关闭端口(释放硬件资源)

printf(" Done\n");

}

// 清理EAL环境,释放所有底层资源(大页内存、PCIe设备、lcore等)

rte_eal_cleanup();

printf("Bye...\n");

return ret;

程序运行结果

我的程序是在Ubuntu22.04的虚拟机上运行的

复制代码
./<build_dir>/examples/dpdk-l2fwd [EAL options] -- -p PORTMASK
                               [-P]
                               [-q NQ]
                               --[no-]mac-updating
                               [--portmap="(port, port)[,(port, port)]"]

EAL options 为环境抽象层(EAL)选项的一般信息,具体配置方法可以看这篇文档:9. EAL 参数 --- 数据平面开发套件 25.11.0 文档 --- 9. EAL parameters --- Data Plane Development Kit 25.11.0 documentation

p PORTMASK:用于配置端口的十六进制比特掩码

P:可选,将所有端口设置为混杂模式,使数据包无论 MAC 目的地址如何都能被接受。如果没有该选项,只有 MAC 目标地址设置为该端口以太网地址的数据包才被接受。

q NQ:每个核心的最大队列数(默认为 1)

--[no-]mac-updating :启用或禁用 MAC 地址更新(默认启用)

--portmap="(port,port)[,(port,port)]":决定转发端口映射。

dpdk二层转发机配置:

虚拟机设置:

查看网卡驱动(使用dpdk的usertools中的dpdk-devbind.py脚本):

bash 复制代码
yy@yy:~/dpdk/dpdk-stable-24.11.4/usertools$ ./dpdk-devbind.py -s

Network devices using DPDK-compatible driver
============================================
0000:02:05.0 '82545EM Gigabit Ethernet Controller (Copper) 100f' drv=vfio-pci unused=e1000
0000:02:06.0 '82545EM Gigabit Ethernet Controller (Copper) 100f' drv=vfio-pci unused=e1000
0000:02:07.0 '82545EM Gigabit Ethernet Controller (Copper) 100f' drv=vfio-pci unused=e1000
0000:02:08.0 '82545EM Gigabit Ethernet Controller (Copper) 100f' drv=vfio-pci unused=e1000

Network devices using kernel driver
===================================
0000:02:01.0 '82545EM Gigabit Ethernet Controller (Copper) 100f' if=ens33 drv=e1000 unused=vfio-pci *Active*

No 'Baseband' devices detected
==============================

No 'Crypto' devices detected
============================

No 'DMA' devices detected
=========================

No 'Eventdev' devices detected
==============================

No 'Mempool' devices detected
=============================

No 'Compress' devices detected
==============================

No 'Misc (rawdev)' devices detected
===================================

No 'Regex' devices detected
===========================

No 'ML' devices detected
========================

绑定网卡驱动同样也是使用dpdk-devbind.py脚本(其中vfio-pci为dpdk程序运行网卡时所需要的驱动,0000:02:05.0为我需要绑定的网卡的编号)

bash 复制代码
./dpdk-devbind.py -b vfio-pci 0000:02:05.0

编译与运行:

在这个路径下执行make可以编译dpdk二层转发应用示例:

bash 复制代码
root@yy:/home/yy/dpdk/dpdk-stable-24.11.4/examples/l2fwd# make

运行dpdk二层转发应用示例,-l指定运行的逻辑和为lcore0和lcore1,-q指定每个逻辑核有两个队列,-p指定端口掩码,3在二进制下为11,表示端口0和端口1:

bash 复制代码
root@yy:/home/yy/dpdk/dpdk-stable-24.11.4/examples/l2fwd# ./build/l2fwd -l 0-1 -- -q 2 -p 3

运行后可以看到这个结果:

bash 复制代码
root@yy:/home/yy/dpdk/dpdk-stable-24.11.4/examples/l2fwd# ./build/l2fwd -l 0-1 -- -q 2 -p 3
EAL: Detected CPU lcores: 4
EAL: Detected NUMA nodes: 1
EAL: Detected shared linkage of DPDK
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: VFIO support initialized
EAL: Using IOMMU type 8 (No-IOMMU)
MAC updating enabled
Lcore 0: RX port 0 TX port 1
Lcore 0: RX port 1 TX port 0
Initializing port 0... EAL: Error enabling MSI-X interrupts for fd 22
done: 
Port 0, MAC address: 00:0C:29:FB:49:F3

Initializing port 1... EAL: Error enabling MSI-X interrupts for fd 26
done: 
Port 1, MAC address: 00:0C:29:FB:49:FD

Skipping disabled port 2
Skipping disabled port 3

Checking link statusdone
Port 0 Link up at 1 Gbps FDX Autoneg
Port 1 Link up at 1 Gbps FDX Autoneg
L2FWD: lcore 1 has nothing to do
L2FWD: entering main loop on lcore 0
L2FWD:  -- lcoreid=0 portid=0
L2FWD:  -- lcoreid=0 portid=1

Port statistics ====================================
Statistics for port 0 ------------------------------
Packets sent:                        0
Packets received:                    0
Packets dropped:                     0
Statistics for port 1 ------------------------------
Packets sent:                        0
Packets received:                    0
Packets dropped:                     0
Aggregate statistics ===============================
Total packets sent:                  0
Total packets received:              0
Total packets dropped:               0
====================================================

发包机配置:

虚拟机设置:

ip地址配置:

bash 复制代码
root@yy:~# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host 
       valid_lft forever preferred_lft forever
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
    link/ether 00:0c:29:38:40:42 brd ff:ff:ff:ff:ff:ff
    altname enp2s1
    inet 192.168.1.125/24 metric 100 brd 192.168.1.255 scope global dynamic ens33
       valid_lft 245801sec preferred_lft 245801sec
    inet6 2409:8a62:2115:8800:20c:29ff:fe38:4042/64 scope global dynamic mngtmpaddr noprefixroute 
       valid_lft 259072sec preferred_lft 172672sec
    inet6 fe80::20c:29ff:fe38:4042/64 scope link 
       valid_lft forever preferred_lft forever
3: ens37: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
    link/ether 00:0c:29:38:40:4c brd ff:ff:ff:ff:ff:ff
    altname enp2s5
    inet 1.1.1.1/24 scope global ens37
       valid_lft forever preferred_lft forever
    inet6 fe80::20c:29ff:fe38:404c/64 scope link 
       valid_lft forever preferred_lft forever

抓包机配置:

虚拟机设置:

ip地址配置:

bash 复制代码
root@yy:~# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host 
       valid_lft forever preferred_lft forever
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
    link/ether 00:0c:29:21:a9:e4 brd ff:ff:ff:ff:ff:ff
    altname enp2s1
    inet 192.168.1.126/24 metric 100 brd 192.168.1.255 scope global dynamic ens33
       valid_lft 245766sec preferred_lft 245766sec
    inet6 2409:8a62:2115:8800:20c:29ff:fe21:a9e4/64 scope global dynamic mngtmpaddr noprefixroute 
       valid_lft 259037sec preferred_lft 172637sec
    inet6 fe80::20c:29ff:fe21:a9e4/64 scope link 
       valid_lft forever preferred_lft forever
3: ens37: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
    link/ether 00:0c:29:21:a9:ee brd ff:ff:ff:ff:ff:ff
    altname enp2s5
    inet 1.1.1.2/24 scope global ens37
       valid_lft forever preferred_lft forever
    inet6 fe80::20c:29ff:fe21:a9ee/64 scope link 
       valid_lft forever preferred_lft forever

运行结果:

二层转发机:

bash 复制代码
Port statistics ====================================
Statistics for port 0 ------------------------------
Packets sent:                        3
Packets received:                    0
Packets dropped:                     0
Statistics for port 1 ------------------------------
Packets sent:                        0
Packets received:                    3
Packets dropped:                     0
Aggregate statistics ===============================
Total packets sent:                  3
Total packets received:              3
Total packets dropped:               0
====================================================

可以看到端口1收到了3个包,并且将这三个包从端口0发送了出去,符合预期。

发包机:

bash 复制代码
root@yy:~# hping3 -I ens37 -c 1 1.1.1.1
HPING 1.1.1.1 (ens37 1.1.1.1): NO FLAGS are set, 40 headers + 0 data bytes

--- 1.1.1.1 hping statistic ---
1 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

发包机从ens37端口向1.1.1.1(抓包机的ip地址)发送了一个数据包。

抓包机:

bash 复制代码
root@yy:~# tcpdump -i ens37 -nnv
tcpdump: listening on ens37, link-type EN10MB (Ethernet), snapshot length 262144 bytes
11:48:39.721636 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 1.1.1.1 tell 1.1.1.2, length 46
11:48:40.736572 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 1.1.1.1 tell 1.1.1.2, length 46
11:48:41.761196 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 1.1.1.1 tell 1.1.1.2, length 

抓包机收到3个ARP请求包,询问1.1.1.1的MAC,但抓包机没有响应ARP,所以发包机无法获得目标MAC,无法发送真正的数据包。不过l2fwd程序是正常运行了的。

解决方案:

相关参考文档

dpdk官方文档:16. L2 转发示例应用(真实和虚拟化环境)------数据平面开发套件 25.11.0 文档 --- 16. L2 Forwarding Sample Application (in Real and Virtualized Environments) --- Data Plane Development Kit 25.11.0 documentation

dpdk优秀入门教学:study_cloud_security_public/2-dpdk/DPDK学习大纲-技术分享版.md at master · haolipeng/study_cloud_security_public

dpdk优质教学视频:【全程干货-实战的DPDK入门视频】https://www.bilibili.com/video/BV1obshzcEUV?vd_source=93b8e5bd54bce5ce350bfa7725b6b58e

相关推荐
梵刹古音2 小时前
【C语言】 数据类型的分类
c语言·开发语言
求真求知的糖葫芦2 小时前
耦合传输线分析学习笔记(八)对称耦合微带线S参数矩阵推导与应用(上)
笔记·学习·矩阵·射频工程
2501_942326442 小时前
掌握脑科学记忆法,助力孩子高效学习
学习
试试勇气2 小时前
Linux学习笔记(十三)--文件系统
linux·笔记·学习
FAFU_kyp2 小时前
RISC0_ZERO项目在macOs上生成链上证明避坑
开发语言·后端·学习·macos·rust
jrlong2 小时前
DataWhale大模型基础与量化微调task5学习笔记(第 3 章:大模型训练与量化_Deepspeed 框架介绍)
笔记·学习
程序员清洒2 小时前
Flutter for OpenHarmony:Icon 与 IconButton — 图标系统集成
前端·学习·flutter·华为
时光慢煮2 小时前
打造跨端驾照学习助手:Flutter × OpenHarmony 实战解析
学习·flutter·华为·开源·openharmony
A9better2 小时前
嵌入式开发学习日志52——二值与计数信号量
单片机·嵌入式硬件·学习