大模型训练数据版权与知识产权问题的解决路径

大模型的训练依赖海量多模态数据,而这些数据中往往包含大量受版权、知识产权保护的作品(如文字、图像、代码、音视频等),当前行业普遍面临数据获取"合法性边界模糊""侵权纠纷频发""利益分配不均"等核心难题。解决此类问题需立足"法律规制、技术防护、机制创新、主体尽责"四大维度,构建全流程、多层次的治理体系,平衡大模型技术创新与知识产权保护的核心利益,推动行业合规有序发展。

一、完善法律规制,明确权利边界与责任划分

法律是解决版权与知识产权纠纷的核心依据,当前需弥补现有规范的适配性缺口,明确大模型训练数据使用的合法边界,降低行业合规不确定性。

(一)细化立法适配,明确核心规则

结合大模型技术特性,补充完善现有知识产权相关法律条款,明确训练数据使用的合法性标准。一方面,界定"合理使用"的适用边界,借鉴我国"奥特曼"案司法实践精神,明确若训练数据使用仅为提取作品结构、风格等特征,未再现作品独创性表达、未影响原作品正常使用且未损害权利人合法利益,可认定为合理使用;同时借鉴纽约法院相关判决,明确商业性大模型训练若未经授权使用他人作品,原则上不纳入合理使用范畴。另一方面,明确"临时复制"的法律定性,对训练过程中短暂缓存、内存存储等临时复制行为,基于技术必要性原则豁免侵权责任,而对长期保存作品、形成永久复制件的行为,严格要求符合授权规范或法定例外情形。此外,参考《欧盟AI法案》《生成式人工智能服务管理暂行办法》,明确大模型研发企业的主体责任,要求高风险大模型提供训练数据版权清单,强制披露AI生成内容属性及数据来源相关信息。

(二)统一司法裁判标准,规范纠纷处置

针对当前大模型版权纠纷裁判尺度不一的问题,建立专门的知识产权纠纷审理机制,汇总典型案例(如GitHub Copilot案、Stability AI案、笔神作文事件等)形成裁判指引,明确数据爬取、未经授权使用、生成


相关学习推荐:工业和信息化部电子工业标准化研究院关于开展人工智能从业人员 "人工智能大模型应用工程师"专项学习课纲

相关推荐
王解19 小时前
第四篇:万能接口 —— 插件系统设计与实现
人工智能·nanobot
一只理智恩19 小时前
向量数据库在AI领域的核心作用、优势与实践指南
数据库·人工智能
deephub19 小时前
深入RAG架构:分块策略、混合检索与重排序的工程实现
人工智能·python·大语言模型·rag
DeepModel19 小时前
【回归算法】多项式核回归详解
人工智能·数据挖掘·回归
人工智能研究所19 小时前
从 0 开始学习人工智能——什么是推理模型?
人工智能·深度学习·学习·机器学习·语言模型·自然语言处理
mtouch33319 小时前
三维沙盘系统配置管理数字沙盘模块
人工智能·ai·ar·vr·虚拟现实·电子沙盘·数字沙盘
Peter·Pan爱编程19 小时前
打造私有AI助理:OpenClaw + Ollama本地大模型 + 飞书机器人全接入指南
人工智能·机器人·飞书
Hy行者勇哥19 小时前
Claude Code 类似软件全景对比:差异、成本与选型(技术分享)
大数据·人工智能·学习方法
Hy行者勇哥19 小时前
国产 AI 编程助手全景:哪些像 Claude Code?哪些可平替?差异与成本(技术分享)
人工智能·学习方法
minhuan19 小时前
大模型应用:情感分析:用Stacking堆叠集成+大模型实现1+1>2的AI决策.92
人工智能·集成学习·情感分析·stacking堆叠集成