卷积神经网络(CNN):池化操作

对于卷积神经网络而言,卷积和池化是其的两大核心操作,上一篇讲了池化,用于特征提取,这篇来继续介绍一下池化操作

池化(Pooling):池化是卷积神经网络中的一种下采样操作。它通过定义一个空间邻域(通常为矩形区域),并对该邻域内的特征进行统计处理(如取最大值、平均值等),从而生成新的特征图。池化操作通常紧随卷积层之后。

【作用】

(1)特征降维:池化操作通过减少特征图的尺寸,降低了后续卷积层的计算量和参数数量,++从而提高了计算效率。++

(2)特征提取:通过池化操作,CNN能够进一步提取输入数据的特征,使模型能够学习到更加抽象和高级的特征表示。

(3)防止过拟合:池化操作通过减少特征图的维度和参数数量,降低了模型的复杂度,从而在一定程度上防止了过拟合现象的发生。

最常见的就是最大池化和平均池化两种

相关推荐
草莓熊Lotso5 小时前
远程控制软件实测!2026年1月远程软件从“夯”到“拉”全功能横评
运维·服务器·数据库·人工智能
发哥来了5 小时前
主流AI视频生成模型商用化能力评测:三大核心维度对比分析
大数据·人工智能·音视频
应用市场5 小时前
【自动驾驶感知】基于3D部件引导的图像编辑:细粒度车辆状态理解技术详解
人工智能·3d·自动驾驶
量子-Alex5 小时前
【大模型技术报告】通义千问-VL:一款多功能视觉语言模型,支持理解、定位、文本识别等广泛任务
人工智能·语言模型·自然语言处理
艾莉丝努力练剑5 小时前
【Linux进程控制(三)】实现自主Shell命令行解释器
linux·运维·服务器·c++·人工智能·安全·云原生
薛定谔的猫19825 小时前
十四、基于 BERT 的微博评论情感分析模型训练实践
人工智能·深度学习·bert
asaotomo5 小时前
一款 AI 驱动的新一代安全运维代理 —— DeepSentry(深哨)
运维·人工智能·安全·ai·go
学步_技术5 小时前
食品计算-Multimodal Food Learning
人工智能·深度学习·计算机视觉·语言模型
电商API&Tina5 小时前
唯品会获得vip商品详情 API 返回值说明
java·大数据·开发语言·数据库·人工智能·spring