【机器学习】吴恩达机器学习Lecture3-Linear Algebra review(optional) 线性代数回顾

关键词:

Matrices 矩阵

vector 向量

Matrix Addition 矩阵加法

Scalar Multiplication 标量乘法

Matrix-vector multiplication 矩阵向量乘法

Matrix-matrix multiplication 矩阵矩阵乘法

Not Commutative 不服从交换律

Associative 服从结合律

Identity Matrix 单位矩阵

Inverse and transcope 逆和转置

目录

[3.1 Matrices and vectors 矩阵和向量](#3.1 Matrices and vectors 矩阵和向量)

[3.1.1 Matrix: Rectangular array of numbers](#3.1.1 Matrix: Rectangular array of numbers)

[3.1.2 Matrix Elements (entries of matrix)](#3.1.2 Matrix Elements (entries of matrix))

[3.1.3 Vector: An n x1 matrix](#3.1.3 Vector: An n x1 matrix)

[3.2 Addition and scalar multiplication 矩阵加法和标量乘法](#3.2 Addition and scalar multiplication 矩阵加法和标量乘法)

[3.2.1 Matrix Addition](#3.2.1 Matrix Addition)

[3.2.2 Scalar Multiplication 标量乘法](#3.2.2 Scalar Multiplication 标量乘法)

[3.2.3 Combination of Operands](#3.2.3 Combination of Operands)

[3.3 Matrix-vector multiplication 矩阵向量乘法](#3.3 Matrix-vector multiplication 矩阵向量乘法)

[3.3.1 Example1](#3.3.1 Example1)

[3.3.2 Details](#3.3.2 Details)

[3.3.3 Example2](#3.3.3 Example2)

[3.3.4 矩阵向量乘法在线性回归中的应用举例](#3.3.4 矩阵向量乘法在线性回归中的应用举例)

[3.4 Matrix-matrix multiplication 矩阵矩阵乘法](#3.4 Matrix-matrix multiplication 矩阵矩阵乘法)

[3.4.1 Example](#3.4.1 Example)

[3.4.2 Details](#3.4.2 Details)

[3.4.3 Example2](#3.4.3 Example2)

[3.4.4 矩阵矩阵乘法在线性回归中的应用举例](#3.4.4 矩阵矩阵乘法在线性回归中的应用举例)

[3.5 Matrix multiplication properties 矩阵乘法的特性](#3.5 Matrix multiplication properties 矩阵乘法的特性)

[3.5.1 Not Commutative 不服从交换律](#3.5.1 Not Commutative 不服从交换律)

[3.5.2 Associative 服从结合律](#3.5.2 Associative 服从结合律)

[3.5.3 Identity Matrix 单位矩阵](#3.5.3 Identity Matrix 单位矩阵)

[3.6 Inverse and transcope 逆和转置](#3.6 Inverse and transcope 逆和转置)

[3.6.1 Matrix Inverse 矩阵的逆](#3.6.1 Matrix Inverse 矩阵的逆)

[3.6.2 Matrix Transcope 矩阵转置](#3.6.2 Matrix Transcope 矩阵转置)


正文

3.1 Matrices and vectors 矩阵和向量
3.1.1 Matrix: Rectangular array of numbers

Dimension of matrix: number of rows x number of columns

这是一个4x2矩阵,即4行2列:

A=

\\begin{bmatrix} 1402\&191\\\\ 1371\&821\\\\ 949\&1437\\\\ 147\&1448\\\\ \\end{bmatrix}

记为R\^{4✖️2}.

这是一个2x3矩阵,即2行3列:

B=

\\begin{bmatrix} 1\&2\&3\\\\ 4\&5\&6\\\\ \\end{bmatrix}

记为R\^{2✖️3}.

3.1.2 Matrix Elements (entries of matrix)

A_{ij} = "i,j entry" in the i\^{th} row, j\^{th} column.

such as:

A_{11}=1402

A_{12}=191

A_{32}=1437

A_{41}=147

A_{43}=undefined(error)

3.1.3 Vector: An n x1 matrix

这是一个4-dimensioned vector:

y=

\\begin{bmatrix} 460\\\\ 232\\\\ 315\\\\ 178\\\\ \\end{bmatrix}

记为R\^4.

y_i=i\^{th} element, such as

y_1=460 , y_2=232, y_3=315

我们常用A, B, C, X 来表示矩阵matrix,用a, b, x, y 来表示数字number。

1-indexed vs 0-indexed:

向量下标从1开始还是从0开始?

默认从1开始!


3.2 Addition and scalar multiplication 矩阵加法和标量乘法
3.2.1 Matrix Addition

只有同型矩阵可以相加! same dimension!

对应位置的元素相加。

3.2.2 Scalar Multiplication 标量乘法

scalar: real number

计算前后矩阵的形状不变 same dimension!

每个元素都要乘

3.2.3 Combination of Operands

如下例子所示:

用到的运算:

scalar multiplication 标量乘法

scalar division 标量除法

matrix subtraction/ vector subtraction 矩阵/向量减法

matrix addition/ vector addition矩阵/向量加法

最终得到一个 3✖️1 matrix / 3-dimensioned vector


3.3 Matrix-vector multiplication 矩阵向量乘法
3.3.1 Example1

\\begin{bmatrix} 1\&3\\\\ 4\&0\\\\ 2\&1\\\\ \\end{bmatrix} \\begin{bmatrix} 1\\\\ 5\\\\ \\end{bmatrix} = \\begin{bmatrix} 16\\\\ 4\\\\ 7\\\\ \\end{bmatrix}

矩阵行和向量对应的元素分别相乘,然后相加

3.3.2 Details
3.3.3 Example2
3.3.4 矩阵向量乘法在线性回归中的应用举例

对于前面课程提到的假设函数ℎ_𝜃(𝑥) = -40 + 0.25x

可用矩阵向量乘法同时计算4个数据对应的ℎ_𝜃(𝑥) 注意需要在第一个矩阵添加一列全1的向量

we can just use one line code by using Octave to achieve this process:

prediction= DataMatrix \* parameters

而在其他语言中,需要使用for循环多行代码实现


3.4 Matrix-matrix multiplication 矩阵矩阵乘法
3.4.1 Example

矩阵的乘法可转化为多个矩阵与向量的乘法

\\begin{bmatrix} 1\&3\&2\\\\ 4\&0\&1\\\\ \\end{bmatrix} \\begin{bmatrix} 1\&3\\\\ 0\&1\\\\ 5\&2\\\\ \\end{bmatrix} = \\begin{bmatrix} 11\&10\\\\ 9\&14\\\\ \\end{bmatrix}

可转化为

\\begin{bmatrix} 1\&3\&2\\\\ 4\&0\&1\\\\ \\end{bmatrix} \\begin{bmatrix} 1\\\\ 0\\\\ 5\\\\ \\end{bmatrix} = \\begin{bmatrix} 11\\\\ 9\\\\ \\end{bmatrix}

\\begin{bmatrix} 1\&3\&2\\\\ 4\&0\&1\\\\ \\end{bmatrix} \\begin{bmatrix} 3\\\\ 1\\\\ 2\\\\ \\end{bmatrix} = \\begin{bmatrix} 10\\\\ 14\\\\ \\end{bmatrix}

3.4.2 Details

The i\^{th} column of the matrix C is obtained by multiplying A with the i\^{th} column of B . (for i=1,2, ..., o)

3.4.3 Example2

\\begin{bmatrix} 1\&2\\\\ 3\&5\\\\ \\end{bmatrix} \\begin{bmatrix} 0\&1\\\\ 3\&2\\\\ \\end{bmatrix} = \\begin{bmatrix} 9\&7\\\\ 15\&12\\\\ \\end{bmatrix}

3.4.4 矩阵矩阵乘法在线性回归中的应用举例

如果我们有三个备选假设函数

  1. ℎ_𝜃(𝑥) = -40 + 0.25x

  2. ℎ_𝜃(𝑥) = 200 + 0.1x

  3. ℎ_𝜃(𝑥) = -150 + 0.4x

可用矩阵矩阵乘法同时计算所有House sizes分别对应的4个ℎ_𝜃(𝑥)注意需要在第一个矩阵添加一列全1的向量:


3.5 Matrix multiplication properties 矩阵乘法的特性
3.5.1 Not Commutative 不服从交换律

Let A and B be matrices. Then in general, A ✖️ B≠B ✖️ A. (not commuative)

3.5.2 Associative 服从结合律

Let A, B and C be matrices. Then in general, A ✖️ B✖️C=B ✖️ C✖️A. (associative)

3.5.3 Identity Matrix 单位矩阵

Denoted I (or I_{n✖️n}).

Examples of identity matrixs:

\\begin{bmatrix} 1\&0\\\\ 0\&1\\\\ \\end{bmatrix} \\begin{bmatrix} 1\&0\&0\\\\ 0\&1\&0\\\\ 0\&0\&1\\\\ \\end{bmatrix} \\begin{bmatrix} 1\&0\&0\&0\\\\ 0\&1\&0\&0\\\\ 0\&0\&1\&0\\\\ 0\&0\&0\&1 \\end{bmatrix}

For any matrix A, A·I=I·A=A

AB≠BA inn general, but AI=IA


3.6 Inverse and transcope 逆和转置
3.6.1 Matrix Inverse 矩阵的逆

类比实数中倒数的概念

Not all numbers have an inverse, alse not all numbers have an inverse.

Matrices that don't have an inverse are "singular" or "degenerate" 奇异矩阵或退化矩阵

Only square matrix (#rows= = #columns) can have a inverse.

If A is an m✖️m matrix, and if it has an inverse, then AA\^{-1}=A\^{-1}A=I. (I="identity")

3.6.2 Matrix Transcope 矩阵转置

Let A be an m✖️n matrix, and let B=A\^T. Then B is an n✖️m, and B_{ij}=A_{ji}.

Example:

A=\\begin{bmatrix} 1\&2\&0\\\\ 3\&5\&9\\\\ \\end{bmatrix}

A\^T=\\begin{bmatrix} 1\&3\\\\ 2\&5\\\\ 0\&9\\\\ \\end{bmatrix}

相关推荐
ZPC82102 小时前
机器人手眼标定
人工智能·python·数码相机·算法·机器人
张艾拉 Fun AI Everyday2 小时前
Sparkli AI:塑造 5-12 岁孩子“金钱观”和“商业思维”的闯关游戏
人工智能·游戏
机器学习之心HML2 小时前
PGA+MKAN+Timexer时间序列预测模型Pytorch架构
人工智能·pytorch·python
爱打代码的小林2 小时前
基于 OpenCV+Dlib 的实时人脸分析系统:年龄性别检测 + 疲劳监测 + 表情识别
人工智能·opencv·计算机视觉
jianwuhuang822 小时前
豆包内容导出图片
人工智能·chatgpt
瑞华丽PLM2 小时前
从设计到制造的“断裂带”:汽车零部件企业如何通过 eBOM 与 mBOM 的无缝转化降低成本?
大数据·人工智能·汽车·制造·国产plm·瑞华丽plm·瑞华丽
查无此人byebye2 小时前
阿里开源Wan2.2模型全面解析:MoE架构加持,电影级视频生成触手可及
人工智能·pytorch·python·深度学习·架构·开源·音视频
果粒蹬i2 小时前
降维实战:PCA与LDA在sklearn中的实现
人工智能·python·sklearn
小龙报2 小时前
【数据结构与算法】单链表核心精讲:从概念到实战,吃透指针与动态内存操作
c语言·开发语言·数据结构·c++·人工智能·算法·链表