论文阅读“Tactile-reactive gripper with an active palm for dexterous manipulation“

目录

摘要

Designing robotic grippers that integrate rich sensing with low degrees of freedom while maintaining high dexterity remains a critical challenge in robotics. Although high-resolution tactile sensing, particularly vision-based tactile sensing, has advanced considerably and been incorporated into grippers, most prior work has concentrated on fingertips, leaving the functional role of the palm largely overlooked.

Moreover, the potential of the palm to provide actuation alongside support and tactile feedback still remains underexplored.

Herein, this work introduces a tactile-reactive gripper that integrates an active tactile palm capable of both actuation and high-resolution vision-based sensing, together with reconfigurable compliant fingers equipped with fingertip tactile arrays.

The resulting architecture enables multi-sensing fusion to support adaptive grasping and contact-rich manipulation through coordinated palm-finger interactions.

Extensive evaluations, including YCB benchmarking, diverse in-hand manipulation tasks, fruit-picking, and industrial application cases, demonstrate the effectiveness of the proposed active tactile palm in enhancing dexterity and sensing, enabling challenging tasks with only seven degrees of freedom.

The results provide a new reference for the design of tactile grippers that combine mechanical simplicity with advanced perception and high dexterity.

讨论

In summary, the proposed gripper demonstrates that a compact design with only seven degrees of freedom is capable of achieving robust grasping of diverse objects, fine-grained perception, and dexterous in-hand manipulation through effective coordination between the fingers and the active tactile palm.

This result highlights that high manipulation performance does not necessarily require high-DOF designs, but can also be realized through finger-palm synergy.

Furthermore, the integration of multi-sensing enables the gripper to extract rich contact information, providing both stability in grasping fragile objects and adaptability in more complex manipulation scenarios.

One of the most compelling findings of our research is the demonstrated effectiveness of the active tactile palm. Specifically, under low-DOF constraints, the actuated palm not only exhibits potential for enhancing dexterous manipulation but also provides perceptual capabilities through tactile feedback.

By integrating comprehensive tactile feedback with highly flexible joint functionality, the active tactile palm enables more complex manipulations that approach the dexterity of human hands, accomplishing tasks that other tactile grippers lacking such design cannot achieve.
 From a hardware perspective, the design is compact and modular, with all components fabricated via 3D printing and tactile sensing implemented using open-source or commercially available sensors.

Compared to state-of-the-art high-DOF tactile hands that require sophisticated design and complex assembly processes, our three-finger-plus-palm structure accomplishes a range of complex tasks through relatively simple palm-finger coordination.

In contrast to conventional low-DOF two-finger tactile grippers, the proposed design delivers substantially greater manipulation capability, particularly for in-hand manipulation tasks. Compared to high-DOF robotic hands with a larger number of actuated fingers, for common contact-driven tasks such as grasping that do not require high kinematic redundancy, the proposed gripper can be effectively operated using a low-DOF design without incurring a speed disadvantage.

Although robotic hands with more independently actuated fingers may achieve fine in-hand adjustments or multi-contact manipulations more quickly, this trade-off does not diminish the versatility of the proposed gripper.
 Nevertheless, the proposed gripper faces certain limitations in manipulating very small and flat objects. Additionally, the use of commercial GelSight sensor as the tactile palm constrains the supporting surface area, thereby limiting in-hand manipulation performance for objects requiring extensive palm contact (e.g., wide objects).

This limited surface area also leads to center-of-mass instability, which further complicates manipulation control. Moreover, the current finger geometry imposes additional constraints during in-hand manipulation. The relatively large finger width can cause contact points to shift along the finger pads during rotation, reducing contact stability and limiting the maximum achievable rotation in a single manipulation step.

In addition, the finger length may be insufficient for tall objects, leading to inadequate contact support and a higher effective center of mass, which further increases the likelihood of slip or instability during contact-rich manipulation.

Potential improvements include incorporating soft fingernail extensions into the Fin Ray structure to better accommodate these challenging objects, as well as developing larger tactile sensors or implementing multi-level palm platforms with adjustable height and diameter.
 Beyond hardware design improvements, learning-based manipulation methods can be developed and tested in unstructured environments involving irregularly shaped objects and dynamic disturbances.

Benefiting from our gripper's multi-sensing capabilities, which demonstrate outstanding contact-rich feature extraction compared to other grippers that only possess tactile sensing modality on fingertips with proprioception, we envision leveraging the active tactile palm through policy learning methods to accomplish more complex manipulation tasks in the future.

我来详细分析这篇关于触觉反应式夹持器(Tactile-reactive gripper)的研究论文。这是一篇发表在npj Robotics上的高质量研究,提出了一种具有主动手掌的7自由度触觉夹持器。

一、研究背景与核心问题

1.1 现有研究的局限性

  • 指尖触觉为主 :现有触觉夹持器主要关注指尖的高分辨率触觉感知(如GelSight系列),手掌的功能被严重忽视
  • 手掌功能单一:传统设计中手掌仅作为被动支撑面,缺乏主动驱动能力
  • 多模态融合不足:手指触觉阵列与手掌视觉触觉传感器的异构信号缺乏有效融合机制

1.2 生物启发

论文从人类手掌的多功能性获得灵感(图1a):

  1. 支撑功能:手掌向上时作为机械稳定器,支持手指进行手中操作
  2. 感知功能:大面积触觉感知区域,感知物体几何和材料特性
  3. 驱动功能:如拧瓶盖时,手掌主动按压提供摩擦力和反作用力

二、核心设计创新

2.1 机械架构(图1c-f)

组件 设计细节 功能特点
三指结构 全驱动Fin Ray柔顺手指,TPU 95A材料3D打印 被动适应性抓取,无需精确接触建模
手指自由度 每指2-DOF:径向-尺偏(±60°)+ 屈伸(+30°~-60°) 支持三种抓取构型(笼式/平行捏取/强力抓取)
指尖触觉 16×8电阻式阵列(50×25mm²,~3mm²分辨率) 提供接触位置和抓取力反馈
主动手掌 线性执行器(Actuonix PQ12-R),行程0-20mm 垂直滑动实现主动驱动+GelSight Mini视觉触觉感知

总自由度 :3指×2-DOF + 1-DOF手掌 = 7-DOF

2.2 三种抓取构型(图1f)

  • 笼式抓取(Caging):大球形物体,支持手中旋转
  • 平行捏取(Parallel pinch):小型/薄型物体
  • 强力抓取(Power grasping):重型工具(电钻、锤子)

三、关键实验结果

3.1 YCB抓取基准测试(图2)

物体类别 得分 关键发现
圆形物体 136/144 (94%) 指尖触觉反馈表现优异
扁平物体 24/96 (25%) 小垫圈等薄物因接触面积不足易失败
工具类 111/128 (87%) 强力抓取模式效果好
关节物体 15/20 (75%) 重链条低摩擦易滑,绳索高摩擦成功率高
总分 286/404 (71%) 超越Hydra Hand (+7%)、GTac-Gripper (+6%)、RUTH (+15%)

创新点 :手掌主动接触物体表面,提供双重反馈(指尖阵列+手掌图像)

3.2 手中操作能力(图3)

平移任务(50mm X/Y,20mm Z):

  • 大多数平移误差控制在 0-7.5mm
  • Z轴平移完全由手掌DOF单独实现

旋转任务(15°俯仰/横滚/偏航):

  • 旋转误差 < 0.1 rad
  • 手掌边缘推动实现更大旋转角度

3.3 多模态感知融合(图4)

网络架构:交叉注意力融合网络

  • 视觉编码器:ResNet-18处理手掌GelSight图像(320×240)
  • 触觉编码器:MLP处理指尖阵列(16×8×3,三指)
  • 本体感知:关节角度归一化输入

分类准确率对比(8种物体:3种饮料罐+5种球类):

模态组合 准确率 说明
仅手掌图像 90.62% 难以区分相似环状纹理的罐子
仅指尖阵列 92.19% 罐径差异小,抓取姿态相似时受限
仅本体感知 86.45% 几何相似物体关节读数几乎相同
图像+阵列 93.23%
图像+本体 94.79%
阵列+本体 91.15%
全部模态(本文) 98.96% 交叉注意力融合
直接拼接 95.83% 消融实验基准
自注意力 96.35%
简化交叉注意力 96.88%

3.4 精细水果采摘(图5)

草莓采摘实验(n=5):

  • 平行捏取模式,指尖阵列提供力反馈
  • 手掌主动下移接触果实表面,稳定抓取+获取表面几何
  • UV光检测:4天后无可见损伤(与自然碰伤果实对比)

水果拼盘实验(5种水果,n=11):

  • 草莓、番石榴、番茄、猕猴桃、葡萄
  • 基于触觉图像分类,放置到盘子不同区域

3.5 工业应用演示(图6)

应用1:灯泡向上安装(n=10,100%成功率)
  • 挑战:向上插入需同时施加扭矩和向上力(无法依赖重力)
  • 控制策略:触觉-MPC(模型预测控制)
  • 关键发现:接触面积与手掌位移强线性相关(R²=0.994)

失败案例分析(图6e):

  • 固定手掌:无法提供向上支撑力 → 错位
  • 手掌压力过大:过度摩擦阻止旋转
应用2:手中物体重定向(n=10)
  • 基于指尖阵列估计物体方向
  • 目标角度10°/25°/35°,平均误差 0.020-0.046 rad
应用3:人造草莓识别(n=20,100%准确率)
  • 手指重构使手掌靠近候选物体
  • 手掌主动感知表面几何,区分真实/人造草莓
应用4:注射器驱动(n=10,100%成功率)
  • 平行捏取固定针筒,手掌推动活塞

四、核心贡献总结

贡献层级 具体内容
硬件创新 首个集成驱动式视觉触觉手掌的多指夹持器,结合Fin Ray柔顺手指与多模态传感
控制框架 多传感融合的控制架构,协调手指运动学与手掌密集触觉反馈
感知融合 交叉注意力机制融合异构触觉信号(图像+阵列+本体),实现98.96%分类准确率
系统验证 YCB基准、手中操作、水果采摘、工业任务等多场景验证

五、局限性与未来方向

5.1 当前局限

  1. 小/扁平物体:手指宽度大,小垫圈等物体操作困难
  2. 手掌面积限制:商用GelSight Mini支撑面有限,宽物体稳定性不足
  3. 手指几何约束:旋转时接触点沿指垫移动,降低稳定性
  4. 手指长度不足:高物体重心高,易滑动

5.2 改进方向

  • 软质指甲延伸件(Fin Ray结构)
  • 更大面积触觉传感器或多级手掌平台
  • 基于学习的非结构化环境操作策略

六、技术细节补充

6.1 柔顺手指设计(ANSYS FEM优化)

  • 材料:TPU 95A,杨氏模量26MPa,屈服应力8.6MPa
  • 优化目标:7根射线,2mm厚度
  • 约束条件
    • 10N负载下指尖位移<5mm(保护脆弱物体)
    • 最大40N力时应力<3MPa(35%屈服应力,安全裕度)

6.2 控制器设计

指尖触觉控制器 (阈值停止):
q f = ∑ f = 1 3 [ α ( 1 − α ) ] [ Δ C f ∑ S f ] > T t h q_f = \sum_{f=1}^{3} [\alpha \quad (1-\alpha)] \begin{bmatrix} \Delta C_f \\ \sum S_f \end{bmatrix} > T_{th} qf=f=1∑3[α(1−α)][ΔCf∑Sf]>Tth

  • Δ C f \Delta C_f ΔCf:非零接触像素变化
  • ∑ S f \sum S_f ∑Sf:16×8触觉阵列信号强度累加
  • α ∈ [ 0 , 1 ] \alpha \in [0,1] α∈[0,1]:平衡接触面积与信号幅度

手掌触觉-MPC

状态空间: [ c n + 1 , p n + 1 , v n + 1 ] T [c_{n+1}, p_{n+1}, v_{n+1}]^T [cn+1,pn+1,vn+1]T(接触面积、位置、速度)

  • 验证:接触面积与手掌位移线性关系 R 2 = 0.994 R^2=0.994 R2=0.994
  • 目标:调节接触面积至期望值(如灯泡安装设8000像素)

七、论文影响力评估

这篇论文代表了触觉机器人学领域的重要进展:

  1. 概念突破 :重新定义了机器人手掌的角色------从被动支撑到主动感知-驱动一体化
  2. 工程实用:7-DOF设计在复杂度与功能性间取得平衡,适合实际部署
  3. 方法创新:多模态触觉融合框架可推广至其他触觉机器人系统
  4. 开源贡献:代码开源(https://github.com/YuHoChau/7-DOF-Tactile-Gripper)

该研究为低自由度高性能触觉操作提供了新范式,对农业采摘、工业装配、服务机器人等领域具有直接应用价值。

相关推荐
CV-杨帆17 小时前
论文阅读:2026 techrxiv Jailbreak-as-a-Service: The Emerging Threat Landscape
论文阅读
张较瘦_2 天前
[论文阅读] 软件测试 | 跨语言模糊测试大揭秘:C++/Rust/Python谁更胜一筹?
c++·论文阅读·rust
青衫码上行2 天前
Redis常用数据类型操作命令
java·数据库·论文阅读·redis·学习
蓝田生玉1232 天前
qwen论文阅读笔记
论文阅读·笔记
YMWM_2 天前
论文阅读“Thinker: A vision-language foundation model for embodied intelligence“
论文阅读·vla
Eastmount2 天前
[论文阅读] (48)TIFS24 基于注意力的恶意软件API定位技术
论文阅读·系统安全·恶意代码分析·恶意代码定位·tifs
YMWM_3 天前
论文阅读“Scalable and General Whole-Body Control for Cross-Humanoid Locomotion“
论文阅读·vla
DuHz3 天前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
c0d1ng4 天前
二月第二周周报(论文阅读)
论文阅读