【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[2.1 算例1](#2.1 算例1)

[2.2 算例2](#2.2 算例2)

[2.3 算例3](#2.3 算例3)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码、数据、文章](#🌈4 Matlab代码、数据、文章)


💥1 概述

摘要:

空气压缩机系统约占美国和欧盟工业用电量的10%。由于许多研究已经证明了使用人工神经网络进行空压机性能预测的有效性,因此仍然需要预测空压机的电气负荷曲线。本研究的目的是预测压缩空气系统的电气负载曲线,这对于行业从业者和软件提供商开发更好的负载管理和前瞻调度程序的实践和工具很有价值。采用两层前馈神经网络和长短期记忆两种人工神经网络对空压机的电气负荷进行预测。对具有三种不同控制机构的压缩机进行了评估,总共进行了 11,874 次观察。使用样本外数据集和 5 倍交叉验证对预测进行了验证。模型产生的平均决定系数值为0.24-0.94,平均均方根误差为0.05 kW - 5.83 kW,平均绝对比例误差为0.20 - 1.33。结果表明,两种人工神经网络对使用变速驱动的压缩机(平均R2 = 0.8且无中殿预测)均有较好的结果,只有长短期记忆模型对使用开/关控制的压缩机给出了可接受的结果(平均R2 = 0.82且无中殿预测),而对装卸式空压机(构成中殿预测的模型)没有获得满意的结果。

原文摘要:

Air compressor systems are responsible for approximately 10% of the electricity consumed in United States and European Union industry. As many researches have proven the effectiveness of using Artificial Neural Network in air compressor performance prediction, there is still a need to forecast the air compressor electrical load profile. The objective of this study is to predict compressed air systems' electrical load profile, which is valuable to industry practitioners as well as software providers in developing better practice and tools for load management and look-ahead scheduling programs. Two artificial neural networks, Two-Layer Feed-Forward Neural Network and Long Short-Term Memory were used to predict an air compressors electrical load. Compressors with three different control mechanisms are evaluated with a total number of 11,874 observations. The forecasts were validated using out-of-sample datasets with 5-fold cross-validation. Models produced average coefficient of determination values from 0.24 to 0.94, average root-mean-square errors from 0.05 kW - 5.83 kW, and mean absolute scaled errors from 0.20 to 1.33. The results indicate that both artificial neural networks yield good results for compressors using variable speed drive (average R2 = 0.8 and no naïve forecasting), only the long short-term memory model gives acceptable results for compressors using on/off control (average R2 = 0.82 and no naïve forecasting), and no satisfactory results are obtained for load/unload type air compressors (models constituting naïve forecasting).

📚 2 运行结果

2.1 算例1

2.2 算例2

2.3 算例3

部分代码:

RMSE = sqrt(mean((y - yhat).^2)); % calculate root mean squared error

MASE = mean(abs(y-yhat))/(mean(abs(y(2:end)-y(1:end-1)))); % calculate mean absolute scaled error

mdl = fitlm(y,yhat);

R2 = mdl.Rsquared.Ordinary; % get R2 between observed and predicited

T = table (RMSE,MASE, R2,'RowNames',{'Working Days'}); % construct output table

T.Properties.DimensionNames{1} = 'Mode';

figure

subplot(2,1,1)

plot(y)

hold on

plot(yhat,'.-')

hold off

legend(["Measured" "Predicted"])

xlabel("Timestep (15-minutes)")

ylabel("Electrical Load (kW)")

title(["Forecast using FFNN";"Compressor 3"])

subplot(2,1,2)

stem(yhat - y)

xlabel("Timestep (15-minutes)")

ylabel("Error (kW)")

title("RMSE = " + RMSE)

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码、数据、文章

相关推荐
cyyt13 分钟前
深度学习周报(2.2~2.8)
人工智能·深度学习
Σίσυφος190025 分钟前
PCL 姿态估计 RANSAC + SVD(基于特征匹配)
人工智能·机器学习
Warren2Lynch26 分钟前
C4 vs UML:从入门到结合使用的完整指南(含 Visual Paradigm AI 实操)
人工智能·机器学习·uml
2401_8362358631 分钟前
财务报表识别产品:从“数据搬运”到“智能决策”的技术革命
人工智能·科技·深度学习·ocr·生活
小陈phd1 小时前
多模态大模型学习笔记(一)——机器学习入门:监督/无监督学习核心任务全解析
笔记·学习·机器学习
holeer1 小时前
【V2.0】王万良《人工智能导论》笔记|《人工智能及其应用》课程教材笔记
神经网络·机器学习·ai·cnn·nlp·知识图谱·智能计算
啊森要自信1 小时前
CANN runtime 深度解析:异构计算架构下运行时组件的性能保障与功能增强实现逻辑
深度学习·架构·transformer·cann
小陈phd1 小时前
多模态大模型学习笔记(二)——机器学习十大经典算法:一张表看懂分类 / 回归 / 聚类 / 降维
学习·算法·机器学习
kyle~1 小时前
深度学习---长短期记忆网络LSTM
人工智能·深度学习·lstm
DatGuy1 小时前
Week 36: 量子深度学习入门:辛量子神经网络与物理守恒
人工智能·深度学习·神经网络