论文笔记--OpenPrompt: An Open-source Framework for Prompt-learning

论文笔记--OpenPrompt: An Open-source Framework for Prompt-learning

  • [1. 文章简介](#1. 文章简介)
  • [2. 文章概括](#2. 文章概括)
  • [3 文章重点技术](#3 文章重点技术)
  • [4. 文章亮点](#4. 文章亮点)
  • [5. 原文传送门](#5. 原文传送门)

1. 文章简介

  • 标题:OpenPrompt: An Open-source Framework for Prompt-learning
  • 作者:Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao Zheng, Maosong Sun
  • 日期:2022
  • 期刊:ACL

2. 文章概括

文章介绍了一种开源的工具OpenPrompt,该工具将prompt-learning的一些操作进行封装处理,设计成为一种用户友好的开源三方库,使用起来非常方便。

OpenPrompt使用的基本方法为

3 文章重点技术

  • PLMs:文章支持Huggingface transformers上的PLMs(预训练模型),开发者可通过下述操作直接加载PLMs:
python 复制代码
from openprompt.plms import load_plm
plm, tokenizer, model_config, WrapperClass = load_plm("bert", path_to_bert)
  • 预训练模型PLMs:文章支持Huggingface transformers上的PLMs(预训练模型),开发者可通过下述操作直接加载PLMs:
python 复制代码
from openprompt.plms import load_plm
plm, tokenizer, model_config, WrapperClass = load_plm("bert", path_to_bert)
  • 分词Tokenization:文章特别设计了针对prompt learning的分词模块,可以自动选择合适的分词器,从而简化用户操作。分词器通过上述代码直接加载
  • 模板Templates:Templates将原始文本和软编码或是硬编码(文本)template结合,一般来说会包含上下文相关的token和掩码token。OpenPrompt接受用Python中的字典语法编写的template:
python 复制代码
from openprompt.prompts import ManualTemplate
promptTemplate = ManualTemplate(
    text = '{"placeholder":"text_a"} It was {"mask"}',
    tokenizer = tokenizer,
)

文章给出了一些常用的templates的示例,见下表

  • 言语化Verbalizer:Verbalizer将原始的标签映射到词表中的label words,文章接受手动设计Verbalizer或直接调用AutomaticVerbalizer/SoftVerbalizer/...等API自带的verbalizer方法。下面为一个手动设计verbalizer的示例:
python 复制代码
from openprompt.prompts import ManualVerbalizer
promptVerbalizer = ManualVerbalizer(
    classes = classes,
    label_words = {
        "negative": ["bad"],
        "positive": ["good", "wonderful", "great"],
    },
    tokenizer = tokenizer,
)
  • PromptModel:OpenPrompt使用PromptModel 模块来用于训练和推理,用户只需把上述template\ Verbalizer\ PLMs结合在一起即可以完成此步骤:
python 复制代码
from openprompt import PromptForClassification
promptModel = PromptForClassification(
    template = promptTemplate,
    plm = plm,
    verbalizer = promptVerbalizer,

4. 文章亮点

文章给出了开源工具OpenPrompt,将Prompt learning中涉及到的一些基本操作进行封装,形成了一个方便的pipeline。用户只需安装openprompt三方库并下载一个PLM,就可以进行简单的prompt learning了~

5. 原文传送门

OpenPrompt: An Open-source Framework for Prompt-learning
源代码

相关推荐
清云逸仙3 小时前
AI Prompt应用实战:评论审核系统实现
人工智能·经验分享·ai·语言模型·prompt·ai编程
正宗咸豆花3 小时前
Prompt Minder:重塑 AI 时代的提示词工程基础设施
人工智能·prompt
安娜的信息安全说5 小时前
LLM 安全实战:Prompt 攻击原理、案例与防御指南
安全·ai·prompt
张较瘦_5 小时前
[论文阅读] AI + 软件工程 | LLM救场Serverless开发!SlsReuse框架让函数复用率飙升至91%,还快了44%
论文阅读·人工智能·软件工程
m0_6501082411 小时前
InstructBLIP:面向通用视觉语言模型的指令微调技术解析
论文阅读·人工智能·q-former·指令微调的视觉语言大模型·零样本跨任务泛化·通用视觉语言模型
rchmin18 小时前
Prompt Engineering 从入门到精通的系统学习路径
人工智能·学习·prompt
兔兔爱学习兔兔爱学习18 小时前
4.Prompt Tuning & Delta Tuning
prompt
ACE198518 小时前
AI Agent 设计模式深度解析:提示链(Prompt Chaining)模式
人工智能·设计模式·prompt
north_eagle18 小时前
RAG 同 Prompt Engineering
大模型·prompt·rag
做cv的小昊18 小时前
VLM经典论文阅读:【综述】An Introduction to Vision-Language Modeling
论文阅读·人工智能·计算机视觉·语言模型·自然语言处理·bert·transformer